Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

8 Functors
 8.1  

8 Functors

8.1  

8.1-1 ExtendScalars
‣ ExtendScalars( R, G, EltsG )( function )

Inputs a \(ZH\)-resolution \(R\), a group \(G\) containing \(H\) as a subgroup, and a list \(EltsG\) of elements of \(G\). It returns the free \(ZG\)-resolution \((R \otimes_{ZH} ZG)\). The returned resolution \(S\) has S!.elts:=EltsG. This is a resolution of the \(ZG\)-module \((Z \otimes_{ZH} ZG)\). (Here \(\otimes_{ZH}\) means tensor over \(ZH\).)

Examples:

8.1-2 HomToIntegers
‣ HomToIntegers( X )( function )

Inputs either a \(ZG\)-resolution \(X=R\), or an equivariant chain map \(X = (F:R \longrightarrow S)\). It returns the cochain complex or cochain map obtained by applying \(HomZG( _ , Z)\) where \(Z\) is the trivial module of integers (characteristic 0).

Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 

8.1-3 HomToIntegersModP
‣ HomToIntegersModP( R )( function )

Inputs a \(ZG\)-resolution \(R\) and returns the cochain complex obtained by applying \(HomZG( _ , Z_p)\) where \(Z_p\) is the trivial module of integers mod \(p\). (At present this functor does not handle equivariant chain maps.)

Examples: 1 , 2 , 3 , 4 

8.1-4 HomToIntegralModule
‣ HomToIntegralModule( R, f )( function )

Inputs a \(ZG\)-resolution \(R\) and a group homomorphism \(f:G \longrightarrow GL_n(Z)\) to the group of \(n×n\) invertible integer matrices. Here \(Z\) must have characteristic 0. It returns the cochain complex obtained by applying \(HomZG( _ , A)\) where \(A\) is the \(ZG\)-module \(Z^n\) with \(G\) action via \(f\). (At present this function does not handle equivariant chain maps.)

Examples: 1 , 2 , 3 

8.1-5 TensorWithIntegralModule
‣ TensorWithIntegralModule( R, f )( function )

Inputs a \(ZG\)-resolution \(R\) and a group homomorphism \(f:G \longrightarrow GL_n(Z)\) to the group of \(n×n\) invertible integer matrices. Here \(Z\) must have characteristic 0. It returns the chain complex obtained by tensoring over \(ZG\) with the \(ZG\)-module \(A=Z^n\) with \(G\) action via \(f\). (At present this function does not handle equivariant chain maps.)

Examples: 1 

8.1-6 HomToGModule
‣ HomToGModule( R, A )( function )

Inputs a \(ZG\)-resolution \(R\) and an abelian G-outer group A. It returns the G-cocomplex obtained by applying \(HomZG( _ , A)\). (At present this function does not handle equivariant chain maps.)

Examples: 1 , 2 , 3 , 4 

8.1-7 InduceScalars
‣ InduceScalars( R, hom )( function )

Inputs a \(ZQ\)-resolution \(R\) and a surjective group homomorphism \(hom:G\rightarrow Q\). It returns the unduced non-free \(ZG\)-resolution.

Examples:

8.1-8 LowerCentralSeriesLieAlgebra
‣ LowerCentralSeriesLieAlgebra( G )( function )
‣ LowerCentralSeriesLieAlgebra( f )( function )

Inputs a pcp group \(G\). If each quotient \(G_c/G_{c+1}\) of the lower central series is free abelian or p-elementary abelian (for fixed prime p) then a Lie algebra \(L(G)\) is returned. The abelian group underlying \(L(G)\) is the direct sum of the quotients \(G_c/G_{c+1}\) . The Lie bracket on \(L(G)\) is induced by the commutator in \(G\). (Here \(G_1=G\), \(G_{c+1}=[G_c,G]\) .)

The function can also be applied to a group homomorphism \(f: G \longrightarrow G'\) . In this case the induced homomorphism of Lie algebras \(L(f):L(G) \longrightarrow L(G')\) is returned.

If the quotients of the lower central series are not all free or p-elementary abelian then the function returns fail.

This function was written by Pablo Fernandez Ascariz

Examples: 1 , 2 , 3 

8.1-9 TensorWithIntegers
‣ TensorWithIntegers( X )( function )

Inputs either a \(ZG\)-resolution \(X=R\), or an equivariant chain map \(X = (F:R \longrightarrow S)\). It returns the chain complex or chain map obtained by tensoring with the trivial module of integers (characteristic 0).

Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 

8.1-10 FilteredTensorWithIntegers
‣ FilteredTensorWithIntegers( R )( function )

Inputs a \(ZG\)-resolution \(R\) for which "filteredDimension" lies in NamesOfComponents(R). (Such a resolution can be produced using TwisterTensorProduct(), ResolutionNormalSubgroups() or FreeGResolution().) It returns the filtered chain complex obtained by tensoring with the trivial module of integers (characteristic 0).

Examples: 1 , 2 

8.1-11 TensorWithTwistedIntegers
‣ TensorWithTwistedIntegers( X, rho )( function )

Inputs either a \(ZG\)-resolution \(X=R\), or an equivariant chain map \(X = (F:R \longrightarrow S)\). It also inputs a function \(rho\colon G\rightarrow \mathbb Z\) where the action of \(g \in G\) on \(\mathbb Z\) is such that \(g.1 = rho(g)\). It returns the chain complex or chain map obtained by tensoring with the (twisted) module of integers (characteristic 0).

Examples: 1 , 2 , 3 , 4 

8.1-12 TensorWithIntegersModP
‣ TensorWithIntegersModP( X, p )( function )

Inputs either a \(ZG\)-resolution \(X=R\), or a characteristics 0 chain complex, or an equivariant chain map \(X = (F:R \longrightarrow S)\), or a chain map between characteristic 0 chain complexes, together with a prime \(p\). It returns the chain complex or chain map obtained by tensoring with the trivial module of integers modulo \(p\).

Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 

8.1-13 TensorWithTwistedIntegersModP
‣ TensorWithTwistedIntegersModP( X, p, rho )( function )

Inputs either a \(ZG\)-resolution \(X=R\), or an equivariant chain map \(X = (F:R \longrightarrow S)\), and a prime \(p\). It also inputs a function \(rho\colon G\rightarrow \mathbb Z\) where the action of \(g \in G\) on \(\mathbb Z\) is such that \(g.1 = rho(g)\). It returns the chain complex or chain map obtained by tensoring with the trivial module of integers modulo \(p\).

Examples: 1 

8.1-14 TensorWithRationals
‣ TensorWithRationals( R )( function )

Inputs a \(ZG\)-resolution \(R\) and returns the chain complex obtained by tensoring with the trivial module of rational numbers.

Examples: 1 , 2 , 3 

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind

generated by GAPDoc2HTML