Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

20 Words in free \(ZG\)-modules
 20.1  

20 Words in free \(ZG\)-modules

20.1  

20.1-1 AddFreeWords
‣ AddFreeWords( v, w )( function )

Inputs two words \(v,w\) in a free \(ZG\)-module and returns their sum \(v+w\). If the characteristic of \(Z\) is greater than \(0\) then the next function might be more efficient.

Examples:

20.1-2 AddFreeWordsModP
‣ AddFreeWordsModP( v, w, p )( function )

Inputs two words \(v,w\) in a free \(ZG\)-module and the characteristic \(p\) of \(Z\). It returns the sum \(v+w\). If \(p=0\) the previous function might be fractionally quicker.

Examples:

20.1-3 AlgebraicReduction
‣ AlgebraicReduction( w )( function )
‣ AlgebraicReduction( w, p )( function )

Inputs a word \(w\) in a free \(ZG\)-module and returns a reduced version of the word in which all pairs of mutually inverse letters have been cancelled. The reduction is performed in a free abelian group unless the characteristic \(p\) of \(Z\) is entered.

Examples:

20.1-4 MultiplyWord
‣ MultiplyWord( n, w )( function )

Inputs a word \(w\) and integer \(n\). It returns the scalar multiple \(n\cdot w\).

Examples:

20.1-5 Negate
‣ Negate( [i, j] )( function )

Inputs a pair \([i,j]\) of integers and returns \([-i,j]\).

Examples:

20.1-6 NegateWord
‣ NegateWord( w )( function )

Inputs a word \(w\) in a free \(ZG\)-module and returns the negated word \(-w\).

Examples:

20.1-7 PrintZGword
‣ PrintZGword( w, elts )( function )

Inputs a word \(w\) in a free \(ZG\)-module and a (possibly partial but sufficient) listing elts of the elements of \(G\). The function prints the word \(w\) to the screen in the form

\(r_1E_1 + \ldots + r_nE_n\)

where \(r_i\) are elements in the group ring \(ZG\), and \(E_i\) denotes the \(i\)-th free generator of the module.

Examples: 1 

20.1-8 TietzeReduction
‣ TietzeReduction( S, w )( function )

Inputs a set \(S\) of words in a free \(ZG\)-module, and a word \(w\) in the module. The function returns a word \(w'\) such that {\(S,w'\)} generates the same abelian group as {\(S,w\)}. The word \(w'\) is possibly shorter (and certainly no longer) than \(w\). This function needs to be improved!

Examples:

20.1-9 ResolutionBoundaryOfWord
‣ ResolutionBoundaryOfWord( R, n, w )( function )

Inputs a resolution \(R\), a positive integer \(n\) and a list \(w\) representing a word in the free module \(R_n\). It returns the image of \(w\) under the \(n\)-th boundary homomorphism.

Examples:

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind

generated by GAPDoc2HTML