Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

20 Words in free ZG-modules
 20.1  

20 Words in free ZG-modules

20.1  

20.1-1 AddFreeWords
‣ AddFreeWords( v, w )( function )

Inputs two words v,w in a free ZG-module and returns their sum v+w. If the characteristic of Z is greater than 0 then the next function might be more efficient.

Examples:

20.1-2 AddFreeWordsModP
‣ AddFreeWordsModP( v, w, p )( function )

Inputs two words v,w in a free ZG-module and the characteristic p of Z. It returns the sum v+w. If p=0 the previous function might be fractionally quicker.

Examples:

20.1-3 AlgebraicReduction
‣ AlgebraicReduction( w )( function )
‣ AlgebraicReduction( w, p )( function )

Inputs a word w in a free ZG-module and returns a reduced version of the word in which all pairs of mutually inverse letters have been cancelled. The reduction is performed in a free abelian group unless the characteristic p of Z is entered.

Examples:

20.1-4 MultiplyWord
‣ MultiplyWord( n, w )( function )

Inputs a word w and integer n. It returns the scalar multiple n⋅ w.

Examples:

20.1-5 Negate
‣ Negate( [i, j] )( function )

Inputs a pair [i,j] of integers and returns [-i,j].

Examples:

20.1-6 NegateWord
‣ NegateWord( w )( function )

Inputs a word w in a free ZG-module and returns the negated word -w.

Examples:

20.1-7 PrintZGword
‣ PrintZGword( w, elts )( function )

Inputs a word w in a free ZG-module and a (possibly partial but sufficient) listing elts of the elements of G. The function prints the word w to the screen in the form

r_1E_1 + ... + r_nE_n

where r_i are elements in the group ring ZG, and E_i denotes the i-th free generator of the module.

Examples: 1 

20.1-8 TietzeReduction
‣ TietzeReduction( S, w )( function )

Inputs a set S of words in a free ZG-module, and a word w in the module. The function returns a word w' such that {S,w'} generates the same abelian group as {S,w}. The word w' is possibly shorter (and certainly no longer) than w. This function needs to be improved!

Examples:

20.1-9 ResolutionBoundaryOfWord
‣ ResolutionBoundaryOfWord( R, n, w )( function )

Inputs a resolution R, a positive integer n and a list w representing a word in the free module R_n. It returns the image of w under the n-th boundary homomorphism.

Examples:

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind

generated by GAPDoc2HTML