Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

26 Coxeter diagrams and graphs of groups
 26.1  

26 Coxeter diagrams and graphs of groups

26.1  

26.1-1 CoxeterDiagramComponents
‣ CoxeterDiagramComponents( D )( function )

Inputs a Coxeter diagram D and returns a list [D_1, ..., D_d] of the maximal connected subgraphs D_i.

Examples:

26.1-2 CoxeterDiagramDegree
‣ CoxeterDiagramDegree( D, v )( function )

Inputs a Coxeter diagram D and vertex v. It returns the degree of v (i.e. the number of edges incident with v).

Examples:

26.1-3 CoxeterDiagramDisplay
‣ CoxeterDiagramDisplay( D )( function )
‣ CoxeterDiagramDisplay( D, str )( function )

Inputs a Coxeter diagram D and displays it as a .gif file. It uses the Mozilla web browser as a default to view the diagram. An alternative browser can be set using a second argument str="mozilla".

This function requires Graphviz software.

Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 

26.1-4 CoxeterDiagramFpArtinGroup
‣ CoxeterDiagramFpArtinGroup( D )( function )

Inputs a Coxeter diagram D and returns the corresponding finitely presented Artin group.

Examples: 1 

26.1-5 CoxeterDiagramFpCoxeterGroup
‣ CoxeterDiagramFpCoxeterGroup( D )( function )

Inputs a Coxeter diagram D and returns the corresponding finitely presented Coxeter group.

Examples: 1 

26.1-6 CoxeterDiagramIsSpherical
‣ CoxeterDiagramIsSpherical( D )( function )

Inputs a Coxeter diagram D and returns "true" if the associated Coxeter groups is finite, and returns "false" otherwise.

Examples: 1 

26.1-7 CoxeterDiagramMatrix
‣ CoxeterDiagramMatrix( D )( function )

Inputs a Coxeter diagram D and returns a matrix representation of it. The matrix is given as a function DiagramMatrix(D)(i,j) where i,j can range over the vertices.

Examples:

26.1-8 CoxeterSubDiagram
‣ CoxeterSubDiagram( D, V )( function )

Inputs a Coxeter diagram D and a subset V of its vertices. It returns the full sub-diagram of D with vertex set V.

Examples:

26.1-9 CoxeterDiagramVertices
‣ CoxeterDiagramVertices( D )( function )

Inputs a Coxeter diagram D and returns its set of vertices.

Examples:

26.1-10 EvenSubgroup
‣ EvenSubgroup( G )( function )

Inputs a group G and returns a subgroup G^+. The subgroup is that generated by all products xy where x and y range over the generating set for G stored by GAP. The subgroup is probably only meaningful when G is an Artin or Coxeter group.

Examples: 1 , 2 

26.1-11 GraphOfGroupsDisplay
‣ GraphOfGroupsDisplay( D )( function )
‣ GraphOfGroupsDisplay( D, str )( function )

Inputs a graph of groups D and displays it as a .gif file. It uses the Mozilla web browser as a default to view the diagram. An alternative browser can be set using the second argument str="mozilla".

This function requires Graphviz software.

Examples: 1 , 2 , 3 , 4 

26.1-12 GraphOfResolutions
‣ GraphOfResolutions( D, n )( function )

Inputs a graph of groups D and a positive integer n. It returns a graph of resolutions, each resolution being of length n. It uses the function ResolutionGenericGroup() to produce the resolutions.

Examples:

26.1-13 GraphOfGroups
‣ GraphOfGroups( D )( function )

Inputs a graph of resolutions D and returns the corresponding graph of groups.

Examples: 1 , 2 , 3 , 4 

26.1-14 GraphOfResolutionsDisplay
‣ GraphOfResolutionsDisplay( D )( function )

Inputs a graph of resolutions D and displays it as a .gif file. It uses the Mozilla web browser as a default to view the diagram.

This function requires Graphviz software.

Examples:

26.1-15 GraphOfGroupsTest
‣ GraphOfGroupsTest( D )( function )

Inputs an object D and itries to test whether it is a Graph of Groups. However, it DOES NOT test the injectivity of any homomorphisms. It returns true if D passes the test, and false otherwise.

Note that there is no function IsHapGraphOfGroups() because no special data type has been created for these graphs.

Examples:

26.1-16 TreeOfGroupsToContractibleGcomplex
‣ TreeOfGroupsToContractibleGcomplex( D, G )( function )

Inputs a graph of groups D which is a tree, and also inputs the fundamental group G of the tree in a form which contains each of the groups in the graph as subgroups. It returns a corresponding contractible G-complex.

Examples:

26.1-17 TreeOfResolutionsToContractibleGcomplex
‣ TreeOfResolutionsToContractibleGcomplex( D, G )( function )

Inputs a graph of resolutions D which is a tree, and also inputs the fundamental group G of the tree in a form which contains each of the groups in the graph as subgroups. It returns a corresponding contractible G-complex. The resolutions are stored as a component of the contractible G-complex.

Examples:

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind

generated by GAPDoc2HTML