Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

39 Miscellaneous
 39.1  

39 Miscellaneous

39.1  

39.1-1 SL2Z
‣ SL2Z( p )( function )
‣ SL2Z( 1/m )( function )

Inputs a prime p or the reciprocal 1/m of a square free integer m. In the first case the function returns the conjugate SL(2,Z)^P of the special linear group SL(2,Z) by the matrix P=[[1,0],[0,p]]. In the second case it returns the group SL(2,Z[1/m]).

Examples: 1 , 2 , 3 , 4 

39.1-2 BigStepLCS
‣ BigStepLCS( G, n )( function )

Inputs a group G and a positive integer n. It returns a subseries G=L_1>L_2>... L_k=1 of the lower central series of G such that L_i/L_i+1 has order greater than n.

Examples: 1 , 2 

39.1-3 Classify
‣ Classify( L, Inv )( function )

Inputs a list of objects L and a function Inv which computes an invariant of each object. It returns a list of lists which classifies the objects of L according to the invariant..

Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 

39.1-4 RefineClassification
‣ RefineClassification( C, Inv )( function )

Inputs a list C:=Classify(L,OldInv) and returns a refined classification according to the invariant Inv.

Examples: 1 , 2 , 3 , 4 

39.1-5 Compose
‣ Compose( f, g )( function )

Inputs two FpG-module homomorphisms f:M ⟶ N and g:L ⟶ M with Source(f)=Target(g) . It returns the composite homomorphism fg:L ⟶ N .

This also applies to group homomorphisms f,g.

Examples: 1 

39.1-6 HAPcopyright
‣ HAPcopyright( )( function )

This function provides details of HAP'S GNU public copyright licence.

Examples:

39.1-7 IsLieAlgebraHomomorphism
‣ IsLieAlgebraHomomorphism( f )( function )

Inputs an object f and returns true if f is a homomorphism f:A ⟶ B of Lie algebras (preserving the Lie bracket).

Examples:

39.1-8 IsSuperperfect
‣ IsSuperperfect( G )( function )

Inputs a group G and returns "true" if both the first and second integral homology of G is trivial. Otherwise, it returns "false".

Examples:

39.1-9 MakeHAPManual
‣ MakeHAPManual( )( function )

This function creates the manual for HAP from an XML file.

Examples:

39.1-10 PermToMatrixGroup
‣ PermToMatrixGroup( G, n )( function )

Inputs a permutation group G and its degree n. Returns a bijective homomorphism f:G ⟶ M where M is a group of permutation matrices.

Examples: 1 , 2 

39.1-11 SolutionsMatDestructive
‣ SolutionsMatDestructive( M, B )( function )

Inputs an m×n matrix M and a k×n matrix B over a field. It returns a k×m matrix S satisfying SM=B.

The function will leave matrix M unchanged but will probably change matrix B.

(This is a trivial rewrite of the standard GAP function SolutionMatDestructive(<mat>,<vec>) .)

Examples:

39.1-12 LinearHomomorphismsPersistenceMat
‣ LinearHomomorphismsPersistenceMat( L )( function )

Inputs a composable sequence L of vector space homomorphisms. It returns an integer matrix containing the dimensions of the images of the various composites. The sequence L is determined up to isomorphism by this matrix.

Examples:

39.1-13 NormalSeriesToQuotientHomomorphisms
‣ NormalSeriesToQuotientHomomorphisms( L )( function )

Inputs an (increasing or decreasing) chain L of normal subgroups in some group G. This G is the largest group in the chain. It returns the sequence of composable group homomorphisms G/L[i] → G/L[i+/-1].

Examples:

39.1-14 TestHap
‣ TestHap( )( function )

This runs a representative sample of HAP functions and checks to see that they produce the correct output.

Examples:

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind

generated by GAPDoc2HTML