Knots
‣ PresentationKnotQuandle ( gaussCode ) | ( function ) |
Inputs a Gauss Code of a knot (with the orientations; see GaussCodeOfPureCubicalKnot in HAP package) and outputs the generators and relators of the knot quandle associated (in the form of a record).
‣ PD2GC ( PD ) | ( function ) |
Inputs a Planar Diagram of a knot; outputs the Gauss Code associated (with the orientations).
‣ PlanarDiagramKnot ( n, k ) | ( function ) |
Returns a Planar Diagram for the k-th knot with n crossings (n ≤ 12) if it exists; fail otherwise.
‣ GaussCodeKnot ( n, k ) | ( function ) |
Returns a Gauss Code (with orientations) for the k-th knot with n crossings (n ≤ 12) if it exists; fail otherwise.
Examples:
‣ PresentationKnotQuandleKnot ( n, k ) | ( function ) |
Returns generators and relators (in the form of a record) for the k-th knot with n crossings (n ≤ 12) if it exists; fail otherwise.
‣ NumberOfHomomorphisms ( genRelQ, finiteQ ) | ( function ) |
Inputs generators and relators genRelQ of a knot quandle (in the form of a record, see above) and a finite quandle finiteQ; outputs the number of homomorphisms from the former to the latter.
‣ PartitionedNumberOfHomomorphisms ( genRelQ, finiteQ ) | ( function ) |
Inputs generators and relators genRelQ of a knot quandle (in the form of a record, see above) and a finite connected quandle finiteQ; outputs a partition of the number of homomorphisms from the former to the latter.
Examples: 1
Quandles
‣ ConjugationQuandle ( G, n ) | ( function ) |
Inputs a finite group G and an integer n; outputs the associated n-fold conjugation quandle.
‣ FirstQuandleAxiomIsSatisfied ( M ) | ( function ) |
‣ SecondQuandleAxiomIsSatisfied ( M ) | ( function ) |
‣ ThirdQuandleAxiomIsSatisfied ( M ) | ( function ) |
Inputs a finite magma M; returns true if M satisfy the first/second/third axiom of a quandle, false otherwise.
Examples:
‣ IsQuandle ( M ) | ( function ) |
Inputs a finite magma M; returns true if M is a quandle, false otherwise.
‣ Quandles ( n ) | ( function ) |
Returns a list of all quandles of size n, n ≤ 6. If n ≥ 7, it returns fail.
Examples: 1 , 2 , 3 , 4 , 5 , 6
‣ Quandle ( n, k ) | ( function ) |
Returns the k-th quandle of size n (n ≤ 6) if such a quandle exists, fail otherwise.
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7
‣ IdQuandle ( Q ) | ( function ) |
Inputs a quandle Q; and outputs a list of integers [n,k] such that Q is isomorphic to Quandle(n,k). If n ≥ 7, then it returns [n,fail] (where n is the size of Q).
Examples:
‣ IsLatin | ( global variable ) |
Inputs a finite quandle Q; returns true if Q is latin, false otherwise.
Examples:
‣ IsConnectedQuandle | ( global variable ) |
Inputs a finite quandle Q; returns true if Q is connected, false otherwise.
Examples:
‣ ConnectedQuandles ( n ) | ( function ) |
Returns a list of all connected quandles of size n.
‣ ConnectedQuandle ( n, k ) | ( function ) |
Returns the k-th quandle of size n if such a quandle exists, fail otherwise.
‣ IdConnectedQuandle ( Q ) | ( function ) |
Inputs a connected quandle Q; and outputs a list of integers [n,k] such that Q is isomorphic to ConnectedQuandle(n,k).
Examples: 1
‣ IsQuandleEnvelope ( Q, G, e, stigma ) | ( function ) |
Inputs a set Q, a permutation group G, an element e ∈ Q and an element stigma ∈ G; returns true if this structure describes a quandle envelope, false otherwise.
‣ QuandleQuandleEnvelope ( Q, G, e, stigma ) | ( function ) |
Inputs a set Q, a permutation group G, an element e ∈ Q and an element stigma ∈ G. If this structure describes a quandle envelope, the function returns the quandle from this quandle envelope; and fail otherwise. Nb: this quandle is a connected quandle.
‣ KnotInvariantCedric ( genRelQ, n, m ) | ( function ) |
Inputs generators and relators of a knot quandle (in the form of a record, see above) and two integers n and m; outputs a list [n1,n2,...,nk] where nj is a partition of the number of homomorphisms from the considered knot quandle to the j-th connected quandle of size n ≤ i ≤ m.
Examples:
‣ RightMultiplicationGroupAsPerm | ( global variable ) |
Inputs a connected quandle Q; output its right multiplication group whose elements are permutations.
Examples:
‣ RightMultiplicationGroup | ( global variable ) |
Inputs a connected quandle Q; output its right multiplication group whose elements are mappings from Q to Q.
Examples:
‣ AutomorphismGroupQuandleAsPerm ( Q ) | ( function ) |
Inputs a connected quandle Q; outputs its automorphism group whose elements are permutations.
Examples:
‣ AutomorphismGroupQuandle ( Q ) | ( function ) |
Inputs a connected quandle Q; outputs its automorphism group whose elements are mappings from Q to Q.
generated by GAPDoc2HTML