Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

32 Knots and Quandles
 32.1  

32 Knots and Quandles

32.1  

Knots

32.1-1 PresentationKnotQuandle
‣ PresentationKnotQuandle( gaussCode )( function )

Inputs a Gauss Code of a knot (with the orientations; see GaussCodeOfPureCubicalKnot in HAP package) and outputs the generators and relators of the knot quandle associated (in the form of a record).

Examples: 1 , 2 , 3 , 4 

32.1-2 PD2GC
‣ PD2GC( PD )( function )

Inputs a Planar Diagram of a knot; outputs the Gauss Code associated (with the orientations).

Examples: 1 , 2 , 3 

32.1-3 PlanarDiagramKnot
‣ PlanarDiagramKnot( n, k )( function )

Returns a Planar Diagram for the k-th knot with n crossings (n ≤ 12) if it exists; fail otherwise.

Examples: 1 , 2 , 3 

32.1-4 GaussCodeKnot
‣ GaussCodeKnot( n, k )( function )

Returns a Gauss Code (with orientations) for the k-th knot with n crossings (n ≤ 12) if it exists; fail otherwise.

Examples:

32.1-5 PresentationKnotQuandleKnot
‣ PresentationKnotQuandleKnot( n, k )( function )

Returns generators and relators (in the form of a record) for the k-th knot with n crossings (n ≤ 12) if it exists; fail otherwise.

Examples: 1 , 2 , 3 

32.1-6 NumberOfHomomorphisms
‣ NumberOfHomomorphisms( genRelQ, finiteQ )( function )

Inputs generators and relators genRelQ of a knot quandle (in the form of a record, see above) and a finite quandle finiteQ; outputs the number of homomorphisms from the former to the latter.

Examples: 1 , 2 , 3 

32.1-7 PartitionedNumberOfHomomorphisms
‣ PartitionedNumberOfHomomorphisms( genRelQ, finiteQ )( function )

Inputs generators and relators genRelQ of a knot quandle (in the form of a record, see above) and a finite connected quandle finiteQ; outputs a partition of the number of homomorphisms from the former to the latter.

Examples: 1 

Quandles

32.1-8 ConjugationQuandle
‣ ConjugationQuandle( G, n )( function )

Inputs a finite group G and an integer n; outputs the associated n-fold conjugation quandle.

Examples: 1 , 2 

32.1-9 FirstQuandleAxiomIsSatisfied
‣ FirstQuandleAxiomIsSatisfied( M )( function )
‣ SecondQuandleAxiomIsSatisfied( M )( function )
‣ ThirdQuandleAxiomIsSatisfied( M )( function )

Inputs a finite magma M; returns true if M satisfy the first/second/third axiom of a quandle, false otherwise.

Examples:

32.1-10 IsQuandle
‣ IsQuandle( M )( function )

Inputs a finite magma M; returns true if M is a quandle, false otherwise.

Examples: 1 , 2 , 3 

32.1-11 Quandles
‣ Quandles( n )( function )

Returns a list of all quandles of size n, n ≤ 6. If n ≥ 7, it returns fail.

Examples: 1 , 2 , 3 , 4 , 5 , 6 

32.1-12 Quandle
‣ Quandle( n, k )( function )

Returns the k-th quandle of size n (n ≤ 6) if such a quandle exists, fail otherwise.

Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 

32.1-13 IdQuandle
‣ IdQuandle( Q )( function )

Inputs a quandle Q; and outputs a list of integers [n,k] such that Q is isomorphic to Quandle(n,k). If n ≥ 7, then it returns [n,fail] (where n is the size of Q).

Examples:

32.1-14 IsLatin
‣ IsLatin( global variable )

Inputs a finite quandle Q; returns true if Q is latin, false otherwise.

Examples:

32.1-15 IsConnectedQuandle
‣ IsConnectedQuandle( global variable )

Inputs a finite quandle Q; returns true if Q is connected, false otherwise.

Examples:

32.1-16 ConnectedQuandles
‣ ConnectedQuandles( n )( function )

Returns a list of all connected quandles of size n.

Examples: 1 , 2 , 3 

32.1-17 ConnectedQuandle
‣ ConnectedQuandle( n, k )( function )

Returns the k-th quandle of size n if such a quandle exists, fail otherwise.

Examples: 1 , 2 , 3 , 4 

32.1-18 IdConnectedQuandle
‣ IdConnectedQuandle( Q )( function )

Inputs a connected quandle Q; and outputs a list of integers [n,k] such that Q is isomorphic to ConnectedQuandle(n,k).

Examples: 1 

32.1-19 IsQuandleEnvelope
‣ IsQuandleEnvelope( Q, G, e, stigma )( function )

Inputs a set Q, a permutation group G, an element e ∈ Q and an element stigma ∈ G; returns true if this structure describes a quandle envelope, false otherwise.

Examples: 1 , 2 , 3 

32.1-20 QuandleQuandleEnvelope
‣ QuandleQuandleEnvelope( Q, G, e, stigma )( function )

Inputs a set Q, a permutation group G, an element e ∈ Q and an element stigma ∈ G. If this structure describes a quandle envelope, the function returns the quandle from this quandle envelope; and fail otherwise. Nb: this quandle is a connected quandle.

Examples: 1 , 2 , 3 

32.1-21 KnotInvariantCedric
‣ KnotInvariantCedric( genRelQ, n, m )( function )

Inputs generators and relators of a knot quandle (in the form of a record, see above) and two integers n and m; outputs a list [n1,n2,...,nk] where nj is a partition of the number of homomorphisms from the considered knot quandle to the j-th connected quandle of size n ≤ i ≤ m.

Examples:

32.1-22 RightMultiplicationGroupAsPerm
‣ RightMultiplicationGroupAsPerm( global variable )

Inputs a connected quandle Q; output its right multiplication group whose elements are permutations.

Examples:

32.1-23 RightMultiplicationGroup
‣ RightMultiplicationGroup( global variable )

Inputs a connected quandle Q; output its right multiplication group whose elements are mappings from Q to Q.

Examples:

32.1-24 AutomorphismGroupQuandleAsPerm
‣ AutomorphismGroupQuandleAsPerm( Q )( function )

Inputs a connected quandle Q; outputs its automorphism group whose elements are permutations.

Examples:

32.1-25 AutomorphismGroupQuandle
‣ AutomorphismGroupQuandle( Q )( function )

Inputs a connected quandle Q; outputs its automorphism group whose elements are mappings from Q to Q.

Examples: 1 , 2 , 3 

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind

generated by GAPDoc2HTML