Knots
‣ PresentationKnotQuandle ( gaussCode ) | ( function ) |
Inputs a Gauss Code of a knot (with the orientations; see \(GaussCodeOfPureCubicalKnot\) in HAP package) and outputs the generators and relators of the knot quandle associated (in the form of a record).
‣ PD2GC ( PD ) | ( function ) |
Inputs a Planar Diagram of a knot; outputs the Gauss Code associated (with the orientations).
‣ PlanarDiagramKnot ( n, k ) | ( function ) |
Returns a Planar Diagram for the \(k\)-th knot with \(n\) crossings (\(n \leq 12\)) if it exists; fail otherwise.
‣ GaussCodeKnot ( n, k ) | ( function ) |
Returns a Gauss Code (with orientations) for the \(k\)-th knot with \(n\) crossings (\(n \leq 12\)) if it exists; fail otherwise.
Examples:
‣ PresentationKnotQuandleKnot ( n, k ) | ( function ) |
Returns generators and relators (in the form of a record) for the \(k\)-th knot with \(n\) crossings (\(n \leq 12\)) if it exists; fail otherwise.
‣ NumberOfHomomorphisms ( genRelQ, finiteQ ) | ( function ) |
Inputs generators and relators \(genRelQ\) of a knot quandle (in the form of a record, see above) and a finite quandle \(finiteQ\); outputs the number of homomorphisms from the former to the latter.
‣ PartitionedNumberOfHomomorphisms ( genRelQ, finiteQ ) | ( function ) |
Inputs generators and relators \(genRelQ\) of a knot quandle (in the form of a record, see above) and a finite connected quandle \(finiteQ\); outputs a partition of the number of homomorphisms from the former to the latter.
Examples: 1
Quandles
‣ ConjugationQuandle ( G, n ) | ( function ) |
Inputs a finite group \(G\) and an integer \(n\); outputs the associated \(n\)-fold conjugation quandle.
‣ FirstQuandleAxiomIsSatisfied ( M ) | ( function ) |
‣ SecondQuandleAxiomIsSatisfied ( M ) | ( function ) |
‣ ThirdQuandleAxiomIsSatisfied ( M ) | ( function ) |
Inputs a finite magma \(M\); returns true if \(M\) satisfy the first/second/third axiom of a quandle, false otherwise.
Examples:
‣ IsQuandle ( M ) | ( function ) |
Inputs a finite magma \(M\); returns true if \(M\) is a quandle, false otherwise.
‣ Quandles ( n ) | ( function ) |
Returns a list of all quandles of size \(n\), \(n \leq 6\). If \(n \geq 7\), it returns fail.
Examples: 1 , 2 , 3 , 4 , 5 , 6
‣ Quandle ( n, k ) | ( function ) |
Returns the \(k\)-th quandle of size \(n\) (\(n \leq 6\)) if such a quandle exists, fail otherwise.
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7
‣ IdQuandle ( Q ) | ( function ) |
Inputs a quandle \(Q\); and outputs a list of integers [\(n\),\(k\)] such that \(Q\) is isomorphic to \(Quandle(n,k)\). If \(n \geq 7\), then it returns [\(n\),fail] (where \(n\) is the size of \(Q\)).
Examples:
‣ IsLatin | ( global variable ) |
Inputs a finite quandle \(Q\); returns true if \(Q\) is latin, false otherwise.
Examples:
‣ IsConnectedQuandle | ( global variable ) |
Inputs a finite quandle \(Q\); returns true if \(Q\) is connected, false otherwise.
Examples:
‣ ConnectedQuandles ( n ) | ( function ) |
Returns a list of all connected quandles of size \(n\).
‣ ConnectedQuandle ( n, k ) | ( function ) |
Returns the \(k\)-th quandle of size \(n\) if such a quandle exists, fail otherwise.
‣ IdConnectedQuandle ( Q ) | ( function ) |
Inputs a connected quandle \(Q\); and outputs a list of integers [\(n\),\(k\)] such that \(Q\) is isomorphic to \(ConnectedQuandle(n,k)\).
Examples: 1
‣ IsQuandleEnvelope ( Q, G, e, stigma ) | ( function ) |
Inputs a set \(Q\), a permutation group \(G\), an element \(e \in Q\) and an element \(stigma \in G\); returns true if this structure describes a quandle envelope, false otherwise.
‣ QuandleQuandleEnvelope ( Q, G, e, stigma ) | ( function ) |
Inputs a set \(Q\), a permutation group \(G\), an element \(e \in Q\) and an element \(stigma \in G\). If this structure describes a quandle envelope, the function returns the quandle from this quandle envelope; and fail otherwise. Nb: this quandle is a connected quandle.
‣ KnotInvariantCedric ( genRelQ, n, m ) | ( function ) |
Inputs generators and relators of a knot quandle (in the form of a record, see above) and two integers \(n\) and \(m\); outputs a list [\(n\)1,\(n\)2,...,\(n\)k] where \(n\)j is a partition of the number of homomorphisms from the considered knot quandle to the \(j\)-th connected quandle of size \(n \leq i \leq m\).
Examples:
‣ RightMultiplicationGroupAsPerm | ( global variable ) |
Inputs a connected quandle \(Q\); output its right multiplication group whose elements are permutations.
Examples:
‣ RightMultiplicationGroup | ( global variable ) |
Inputs a connected quandle \(Q\); output its right multiplication group whose elements are mappings from \(Q\) to \(Q\).
Examples:
‣ AutomorphismGroupQuandleAsPerm ( Q ) | ( function ) |
Inputs a connected quandle \(Q\); outputs its automorphism group whose elements are permutations.
Examples:
‣ AutomorphismGroupQuandle ( Q ) | ( function ) |
Inputs a connected quandle \(Q\); outputs its automorphism group whose elements are mappings from \(Q\) to \(Q\).
generated by GAPDoc2HTML