Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

32 Knots and Quandles
 32.1  

32 Knots and Quandles

32.1  

Knots

32.1-1 PresentationKnotQuandle
‣ PresentationKnotQuandle( gaussCode )( function )

Inputs a Gauss Code of a knot (with the orientations; see \(GaussCodeOfPureCubicalKnot\) in HAP package) and outputs the generators and relators of the knot quandle associated (in the form of a record).

Examples: 1 , 2 , 3 , 4 

32.1-2 PD2GC
‣ PD2GC( PD )( function )

Inputs a Planar Diagram of a knot; outputs the Gauss Code associated (with the orientations).

Examples: 1 , 2 , 3 

32.1-3 PlanarDiagramKnot
‣ PlanarDiagramKnot( n, k )( function )

Returns a Planar Diagram for the \(k\)-th knot with \(n\) crossings (\(n \leq 12\)) if it exists; fail otherwise.

Examples: 1 , 2 , 3 

32.1-4 GaussCodeKnot
‣ GaussCodeKnot( n, k )( function )

Returns a Gauss Code (with orientations) for the \(k\)-th knot with \(n\) crossings (\(n \leq 12\)) if it exists; fail otherwise.

Examples:

32.1-5 PresentationKnotQuandleKnot
‣ PresentationKnotQuandleKnot( n, k )( function )

Returns generators and relators (in the form of a record) for the \(k\)-th knot with \(n\) crossings (\(n \leq 12\)) if it exists; fail otherwise.

Examples: 1 , 2 , 3 

32.1-6 NumberOfHomomorphisms
‣ NumberOfHomomorphisms( genRelQ, finiteQ )( function )

Inputs generators and relators \(genRelQ\) of a knot quandle (in the form of a record, see above) and a finite quandle \(finiteQ\); outputs the number of homomorphisms from the former to the latter.

Examples: 1 , 2 , 3 

32.1-7 PartitionedNumberOfHomomorphisms
‣ PartitionedNumberOfHomomorphisms( genRelQ, finiteQ )( function )

Inputs generators and relators \(genRelQ\) of a knot quandle (in the form of a record, see above) and a finite connected quandle \(finiteQ\); outputs a partition of the number of homomorphisms from the former to the latter.

Examples: 1 

Quandles

32.1-8 ConjugationQuandle
‣ ConjugationQuandle( G, n )( function )

Inputs a finite group \(G\) and an integer \(n\); outputs the associated \(n\)-fold conjugation quandle.

Examples: 1 , 2 

32.1-9 FirstQuandleAxiomIsSatisfied
‣ FirstQuandleAxiomIsSatisfied( M )( function )
‣ SecondQuandleAxiomIsSatisfied( M )( function )
‣ ThirdQuandleAxiomIsSatisfied( M )( function )

Inputs a finite magma \(M\); returns true if \(M\) satisfy the first/second/third axiom of a quandle, false otherwise.

Examples:

32.1-10 IsQuandle
‣ IsQuandle( M )( function )

Inputs a finite magma \(M\); returns true if \(M\) is a quandle, false otherwise.

Examples: 1 , 2 , 3 

32.1-11 Quandles
‣ Quandles( n )( function )

Returns a list of all quandles of size \(n\), \(n \leq 6\). If \(n \geq 7\), it returns fail.

Examples: 1 , 2 , 3 , 4 , 5 , 6 

32.1-12 Quandle
‣ Quandle( n, k )( function )

Returns the \(k\)-th quandle of size \(n\) (\(n \leq 6\)) if such a quandle exists, fail otherwise.

Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 

32.1-13 IdQuandle
‣ IdQuandle( Q )( function )

Inputs a quandle \(Q\); and outputs a list of integers [\(n\),\(k\)] such that \(Q\) is isomorphic to \(Quandle(n,k)\). If \(n \geq 7\), then it returns [\(n\),fail] (where \(n\) is the size of \(Q\)).

Examples:

32.1-14 IsLatin
‣ IsLatin( global variable )

Inputs a finite quandle \(Q\); returns true if \(Q\) is latin, false otherwise.

Examples:

32.1-15 IsConnectedQuandle
‣ IsConnectedQuandle( global variable )

Inputs a finite quandle \(Q\); returns true if \(Q\) is connected, false otherwise.

Examples:

32.1-16 ConnectedQuandles
‣ ConnectedQuandles( n )( function )

Returns a list of all connected quandles of size \(n\).

Examples: 1 , 2 , 3 

32.1-17 ConnectedQuandle
‣ ConnectedQuandle( n, k )( function )

Returns the \(k\)-th quandle of size \(n\) if such a quandle exists, fail otherwise.

Examples: 1 , 2 , 3 , 4 

32.1-18 IdConnectedQuandle
‣ IdConnectedQuandle( Q )( function )

Inputs a connected quandle \(Q\); and outputs a list of integers [\(n\),\(k\)] such that \(Q\) is isomorphic to \(ConnectedQuandle(n,k)\).

Examples: 1 

32.1-19 IsQuandleEnvelope
‣ IsQuandleEnvelope( Q, G, e, stigma )( function )

Inputs a set \(Q\), a permutation group \(G\), an element \(e \in Q\) and an element \(stigma \in G\); returns true if this structure describes a quandle envelope, false otherwise.

Examples: 1 , 2 , 3 

32.1-20 QuandleQuandleEnvelope
‣ QuandleQuandleEnvelope( Q, G, e, stigma )( function )

Inputs a set \(Q\), a permutation group \(G\), an element \(e \in Q\) and an element \(stigma \in G\). If this structure describes a quandle envelope, the function returns the quandle from this quandle envelope; and fail otherwise. Nb: this quandle is a connected quandle.

Examples: 1 , 2 , 3 

32.1-21 KnotInvariantCedric
‣ KnotInvariantCedric( genRelQ, n, m )( function )

Inputs generators and relators of a knot quandle (in the form of a record, see above) and two integers \(n\) and \(m\); outputs a list [\(n\)1,\(n\)2,...,\(n\)k] where \(n\)j is a partition of the number of homomorphisms from the considered knot quandle to the \(j\)-th connected quandle of size \(n \leq i \leq m\).

Examples:

32.1-22 RightMultiplicationGroupAsPerm
‣ RightMultiplicationGroupAsPerm( global variable )

Inputs a connected quandle \(Q\); output its right multiplication group whose elements are permutations.

Examples:

32.1-23 RightMultiplicationGroup
‣ RightMultiplicationGroup( global variable )

Inputs a connected quandle \(Q\); output its right multiplication group whose elements are mappings from \(Q\) to \(Q\).

Examples:

32.1-24 AutomorphismGroupQuandleAsPerm
‣ AutomorphismGroupQuandleAsPerm( Q )( function )

Inputs a connected quandle \(Q\); outputs its automorphism group whose elements are permutations.

Examples:

32.1-25 AutomorphismGroupQuandle
‣ AutomorphismGroupQuandle( Q )( function )

Inputs a connected quandle \(Q\); outputs its automorphism group whose elements are mappings from \(Q\) to \(Q\).

Examples: 1 , 2 , 3 

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind

generated by GAPDoc2HTML