Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

16 Lie commutators and nonabelian Lie tensors
 16.1  

16 Lie commutators and nonabelian Lie tensors

Functions on this page are joint work with Hamid Mohammadzadeh, and implemented by him.

16.1  

16.1-1 LieCoveringHomomorphism
‣ LieCoveringHomomorphism( L )( function )

Inputs a finite dimensional Lie algebra \(L\) over a field, and returns a surjective Lie homomorphism \(phi : C\rightarrow L\) where:

Examples: 1 , 2 

16.1-2 LeibnizQuasiCoveringHomomorphism
‣ LeibnizQuasiCoveringHomomorphism( L )( function )

Inputs a finite dimensional Lie algebra \(L\) over a field, and returns a surjective homomorphism \(phi : C\rightarrow L\) of Leibniz algebras where:

Examples:

16.1-3 LieEpiCentre
‣ LieEpiCentre( L )( function )

Inputs a finite dimensional Lie algebra \(L\) over a field, and returns an ideal \(Z^\ast(L)\) of the centre of \(L\). The ideal \(Z^\ast(L)\) is trivial if and only if \(L\) is isomorphic to a quotient \(L=E/Z(E)\) of some Lie algebra \(E\) by the centre of \(E\).

Examples: 1 , 2 

16.1-4 LieExteriorSquare
‣ LieExteriorSquare( L )( function )

Inputs a finite dimensional Lie algebra \(L\) over a field. It returns a record \(E\) with the following components.

Examples:

16.1-5 LieTensorSquare
‣ LieTensorSquare( L )( function )

Inputs a finite dimensional Lie algebra \(L\) over a field and returns a record \(T\) with the following components.

Examples:

16.1-6 LieTensorCentre
‣ LieTensorCentre( L )( function )

Inputs a finite dimensional Lie algebra \(L\) over a field and returns the largest ideal \(N\) such that the induced homomorphism of nonabelian tensor squares \((L \otimes L) \longrightarrow (L/N \otimes L/N)\) is an isomorphism.

Examples:

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind

generated by GAPDoc2HTML