Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

24 Cat-1-groups
 24.1  

24 Cat-1-groups

24.1  

24.1-1 AutomorphismGroupAsCatOneGroup
‣ AutomorphismGroupAsCatOneGroup( G )( function )

Inputs a group \(G\) and returns the Cat-1-group \(C\) corresponding to the crossed module \(G\rightarrow Aut(G)\).

Examples: 1 , 2 , 3 , 4 , 5 , 6 

24.1-2 HomotopyGroup
‣ HomotopyGroup( C, n )( function )

Inputs a cat-1-group \(C\) and an integer n. It returns the \(n\)th homotopy group of \(C\).

Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 

24.1-3 HomotopyModule
‣ HomotopyModule( C, 2 )( function )

Inputs a cat-1-group \(C\) and an integer n=2. It returns the second homotopy group of \(C\) as a G-module (i.e. abelian G-outer group) where G is the fundamental group of C.

Examples: 1 , 2 

24.1-4 QuasiIsomorph
‣ QuasiIsomorph( C )( function )

Inputs a cat-1-group \(C\) and returns a cat-1-group \(D\) for which there exists some homomorphism \(C\rightarrow D\) that induces isomorphisms on homotopy groups.

This function was implemented by Le Van Luyen.

Examples: 1 , 2 , 3 

24.1-5 ModuleAsCatOneGroup
‣ ModuleAsCatOneGroup( global variable )

Inputs a group \(G\), an abelian group \(M\) and a homomorphism \(\alpha\colon G\rightarrow Aut(M)\). It returns the Cat-1-group \(C\) corresponding th the zero crossed module \(0\colon M\rightarrow G\).

Examples:

24.1-6 MooreComplex
‣ MooreComplex( C )( function )

Inputs a cat-1-group \(C\) and returns its Moore complex as a G-complex (i.e. as a complex of groups considered as 1-outer groups).

Examples:

24.1-7 NormalSubgroupAsCatOneGroup
‣ NormalSubgroupAsCatOneGroup( G, N )( function )

Inputs a group \(G\) with normal subgroup \(N\). It returns the Cat-1-group \(C\) corresponding th the inclusion crossed module \( N\rightarrow G\).

Examples:

24.1-8 XmodToHAP
‣ XmodToHAP( C )( function )

Inputs a cat-1-group \(C\) obtained from the Xmod package and returns a cat-1-group \(D\) for which IsHapCatOneGroup(D) returns true.

It returns "fail" id \(C\) has not been produced by the Xmod package.

Examples: 1 

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind

generated by GAPDoc2HTML