‣ Array ( A, f ) | ( function ) |
Inputs an array \(A\) and a function \(f\). It returns the the array obtained by applying \(f\) to each entry of \(A\) (and leaves \(A\) unchanged).
‣ PermuteArray ( A, f ) | ( function ) |
Inputs an array \(A\) of dimension \(d\) and a permutation \(f\) of degree at most \(d\). It returns the array \(B\) defined by \(B[i1][i2]...[id] = A[f(i1)][f(i2)]...A[f(id)]\) (and leaves \(A\) unchanged).
Examples:
‣ ArrayDimension ( A ) | ( function ) |
Inputs an array \(A\) and returns its dimension.
Examples:
‣ ArrayDimensions ( A ) | ( function ) |
Inputs an array \(A\) and returns its dimensions.
Examples:
‣ ArraySum ( A ) | ( function ) |
Inputs an array \(A\) and returns the sum of its entries.
Examples:
‣ ArrayValue ( A, x ) | ( function ) |
Inputs an array \(A\) and a coordinate vector \(x\). It returns the value of the entry in \(A\) with coordinate \(x\).
Examples:
‣ ArrayValueFunctions ( d ) | ( function ) |
Inputs a positive integer \(d\) and returns an efficient version of the function ArrayValue for arrays of dimension \(d\).
Examples:
‣ ArrayAssign ( A, x, n ) | ( function ) |
Inputs an array \(A\) and a coordinate vector \(x\) and an integer \(n\). It sets the entry of \(A\) with coordinate \(x\) equal to \(n\).
Examples:
‣ ArrayAssignFunctions ( d ) | ( function ) |
Inputs a positive integer \(d\) and returns an efficient version of the function ArrayAssign for arrays of dimension \(d\).
Examples:
‣ ArrayIterate ( d ) | ( function ) |
Inputs a positive integer \(d\) and returns a function ArrayIt(Dimensions,f). This function inputs a list Dimensions of \(d\) positive integers and also a function \(f(x)\). It applies the function \(f(x)\) to each integer list \(x\) of length \(d\) with entries \(x[i]\) in the range [1..Dimension[i]].
Examples:
‣ BinaryArrayToTextFile ( file, A ) | ( function ) |
Inputs a string containing the address of a file, and an array \(A\) of 0s and 1s. The array represents a pure cubical complex. A representation of this complex is written to the file in a format that can be read by the CAPD (Computer Assisted Proofs in Dynamics) software developed by Marian Mrozek and others.
The second input \(A\) can also be a pure cubical complex.
Examples:
‣ FrameArray ( A ) | ( function ) |
Inputs an array \(A\) and returns the array obtained by appending a 0 to the beginning and end of each "row" of the array.
Examples: 1
‣ UnframeArray ( A ) | ( function ) |
Inputs an array \(A\) and returns the array obtained by removing the first and last entry in each "row" of the array.
Examples:
‣ Add ( L, x ) | ( function ) |
Let \(L\) be a pseudo list of length \(n\), and \(x\) an object compatible with the entries in \(L\). If \(x\) is not in \(L\) then this operation converts \(L\) into a pseudo list of length n+1 by adding \(x\) as the final entry. If \(x\) is in \(L\) the operation has no effect on \(L\).
Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10
‣ Append ( L, K ) | ( function ) |
Let \(L\) be a pseudo list and \(K\) a list whose objects are compatible with those in \(L\). This operation applies Add(L,x) for each x in \(K\).
‣ ListToPseudoList ( L ) | ( function ) |
Inputs a list \(L\) and returns the pseudo list representation of \(L\).
Examples:
generated by GAPDoc2HTML