Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

23 G-Outer Groups
 23.1  

23 G-Outer Groups

23.1  

23.1-1 GOuterGroup
‣ GOuterGroup( E, N )( function )
‣ GOuterGroup( )( function )

Inputs a group \(E\) and normal subgroup \(N\). It returns \(N\) as a \(G\)-outer group where \(G=E/N\).

The function can be used without an argument. In this case an empty outer group \(C\) is returned. The components must be set using SetActingGroup(C,G), SetActedGroup(C,N) and SetOuterAction(C,alpha).

Examples: 1 , 2 , 3 , 4 

23.1-2 GOuterGroupHomomorphismNC
‣ GOuterGroupHomomorphismNC( global variable )
‣ GOuterGroupHomomorphismNC( global variable )

Inputs G-outer groups \(A\) and \(B\) with common acting group, and a group homomorphism phi:ActedGroup(A) --> ActedGroup(B). It returns the corresponding G-outer homomorphism PHI:A--> B. No check is made to verify that phi is actually a group homomorphism which preserves the G-action.

The function can be used without an argument. In this case an empty outer group homomorphism \(PHI\) is returned. The components must then be set.

Examples:

23.1-3 GOuterHomomorphismTester
‣ GOuterHomomorphismTester( A, B, phi )( function )

Inputs G-outer groups \(A\) and \(B\) with common acting group, and a group homomorphism phi:ActedGroup(A) --> ActedGroup(B). It tests whether phi is a group homomorphism which preserves the G-action.

The function can be used without an argument. In this case an empty outer group homomorphism \(PHI\) is returned. The components must then be set.

Examples:

23.1-4 Centre
‣ Centre( A )( function )

Inputs G-outer group \(A\) and returns the group theoretic centre of ActedGroup(A) as a G-outer group.

Examples: 1 , 2 , 3 , 4 , 5 , 6 

23.1-5 DirectProductGog
‣ DirectProductGog( A, B )( function )
‣ DirectProductGog( Lst )( function )

Inputs G-outer groups \(A\) and \(B\) with common acting group, and returns their group-theoretic direct product as a G-outer group. The outer action on the direct product is the diagonal one.

The function also applies to a list Lst of G-outer groups with common acting group.

For a direct product D constructed using this function, the embeddings and projections can be obtained (as G-outer group homomorphisms) using the functions Embedding(D,i) and Projection(D,i).

Examples:

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind

generated by GAPDoc2HTML