Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

10 Sparse Chain complexes
 10.1  

10 Sparse Chain complexes

10.1  

10.1-1 SparseMat
‣ SparseMat( A )( function )

Inputs a matrix \(A\) and returns the matrix in sparse format.

Examples: 1 

10.1-2 TransposeOfSparseMat
‣ TransposeOfSparseMat( A )( function )

Inputs a sparse matrix \(A\) and returns its transpose sparse format.

Examples:

10.1-3 ReverseSparseMat
‣ ReverseSparseMat( A )( function )

Inputs a sparse matrix \(A\) and modifies it by reversing the order of the columns. This function modifies \(A\) and returns no value.

Examples:

10.1-4 SparseRowMult
‣ SparseRowMult( A, i, k )( function )

Multiplies the i-th row of a sparse matrix \(A\) by \(k\). The sparse matrix \(A\) is modified but nothing is returned.

Examples:

10.1-5 SparseRowInterchange
‣ SparseRowInterchange( A, i, k )( function )

Interchanges the i-th and j-th rows of a sparse matrix \(A\) by \(k\). The sparse matrix \(A\) is modified but nothing is returned.

Examples:

10.1-6 SparseRowAdd
‣ SparseRowAdd( A, i, j, k )( function )

Adds \(k\) times the j-th row to the i-th row of a sparse matrix \(A\). The sparse matrix \(A\) is modified but nothing is returned.

Examples:

10.1-7 SparseSemiEchelon
‣ SparseSemiEchelon( A )( function )

Converts a sparse matrix \(A\) to semi-echelon form (which means echelon form up to a permutation of rows). The sparse matrix \(A\) is modified but nothing is returned.

Examples:

10.1-8 RankMatDestructive
‣ RankMatDestructive( A )( function )

Returns the rank of a sparse matrix \(A\). The sparse matrix \(A\) is modified during the calculation.

Examples:

10.1-9 RankMat
‣ RankMat( A )( function )

Returns the rank of a sparse matrix \(A\).

Examples:

10.1-10 SparseChainComplex
‣ SparseChainComplex( Y )( function )

Inputs a regular CW-complex \(Y\) and returns a sparse chain complex which is chain homotopy equivalent to the cellular chain complex of \(Y\). The function uses discrete vector fields to calculate a smallish chain complex.

Examples: 1 , 2 

10.1-11 SparseChainComplexOfRegularCWComplex
‣ SparseChainComplexOfRegularCWComplex( Y )( function )

Inputs a regular CW-complex \(Y\) and returns its cellular chain complex as a sparse chain complex. The function SparseChainComplex(Y) will usually return a smaller chain complex.

Examples:

10.1-12 SparseBoundaryMatrix
‣ SparseBoundaryMatrix( C, n )( function )

Inputs a sparse chain complex \(C\) and integer \(n\). Returns the n-th boundary matrix of the chain complex in sparse format.

Examples:

10.1-13 Bettinumbers
‣ Bettinumbers( C, n )( function )

Inputs a sparse chain complex \(C\) and integer \(n\). Returns the n-th Netti number of the chain complex.

Examples: 1 , 2 

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind

generated by GAPDoc2HTML