‣ SparseMat ( A ) | ( function ) |
Inputs a matrix \(A\) and returns the matrix in sparse format.
Examples: 1
‣ TransposeOfSparseMat ( A ) | ( function ) |
Inputs a sparse matrix \(A\) and returns its transpose sparse format.
Examples:
‣ ReverseSparseMat ( A ) | ( function ) |
Inputs a sparse matrix \(A\) and modifies it by reversing the order of the columns. This function modifies \(A\) and returns no value.
Examples:
‣ SparseRowMult ( A, i, k ) | ( function ) |
Multiplies the i-th row of a sparse matrix \(A\) by \(k\). The sparse matrix \(A\) is modified but nothing is returned.
Examples:
‣ SparseRowInterchange ( A, i, k ) | ( function ) |
Interchanges the i-th and j-th rows of a sparse matrix \(A\) by \(k\). The sparse matrix \(A\) is modified but nothing is returned.
Examples:
‣ SparseRowAdd ( A, i, j, k ) | ( function ) |
Adds \(k\) times the j-th row to the i-th row of a sparse matrix \(A\). The sparse matrix \(A\) is modified but nothing is returned.
Examples:
‣ SparseSemiEchelon ( A ) | ( function ) |
Converts a sparse matrix \(A\) to semi-echelon form (which means echelon form up to a permutation of rows). The sparse matrix \(A\) is modified but nothing is returned.
Examples:
‣ RankMatDestructive ( A ) | ( function ) |
Returns the rank of a sparse matrix \(A\). The sparse matrix \(A\) is modified during the calculation.
Examples:
‣ RankMat ( A ) | ( function ) |
Returns the rank of a sparse matrix \(A\).
Examples:
‣ SparseChainComplex ( Y ) | ( function ) |
Inputs a regular CW-complex \(Y\) and returns a sparse chain complex which is chain homotopy equivalent to the cellular chain complex of \(Y\). The function uses discrete vector fields to calculate a smallish chain complex.
‣ SparseChainComplexOfRegularCWComplex ( Y ) | ( function ) |
Inputs a regular CW-complex \(Y\) and returns its cellular chain complex as a sparse chain complex. The function SparseChainComplex(Y) will usually return a smaller chain complex.
Examples:
‣ SparseBoundaryMatrix ( C, n ) | ( function ) |
Inputs a sparse chain complex \(C\) and integer \(n\). Returns the n-th boundary matrix of the chain complex in sparse format.
Examples:
‣ Bettinumbers ( C, n ) | ( function ) |
Inputs a sparse chain complex \(C\) and integer \(n\). Returns the n-th Netti number of the chain complex.
generated by GAPDoc2HTML