Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

22 Meataxe modules
 22.1  

22 Meataxe modules

22.1  

22.1-1 DesuspensionMtxModule
‣ DesuspensionMtxModule( M )( function )

Inputs a meataxe module \(M\) over the field of \(p\) elements and returns an FpG-module DM. The two modules are related mathematically by the existence of a short exact sequence \(DM \longrightarrow FM \longrightarrow M\) with \(FM\) a free module. Thus the homological properties of \(DM\) are equal to those of \(M\) with a dimension shift.

(If \(G:=Group(M.generators)\) is a \(p\)-group then \(FM\) is a projective cover of \(M\) in the sense that the homomorphism \(FM \longrightarrow M\) does not factor as \(FM \longrightarrow P \longrightarrow M\) for any projective module \(P\).)

Examples: 1 , 2 , 3 

22.1-2 FpG_to_MtxModule
‣ FpG_to_MtxModule( M )( function )

Inputs an FpG-module \(M\) and returns an isomorphic meataxe module.

Examples:

22.1-3 GeneratorsOfMtxModule
‣ GeneratorsOfMtxModule( M )( function )

Inputs a meataxe module \(M\) acting on, say, the vector space \(V\). The function returns a minimal list of row vectors in \(V\) which generate \(V\) as a \(G\)-module (where G=Group(M.generators) ).

Examples:

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind

generated by GAPDoc2HTML