About HAP: The nonabelian tensor product of crossed modules

The right-hand side of the formula $$\pi_3(SK(G,1)) \cong \ker (G\otimes G \rightarrow G, g\otimes g' \mapsto gg'g^{-1}g'^{-1})$$ involves a special case of a crossed module $$M\otimes N \rightarrow G, m\otimes n \mapsto (\partial m)(\partial'n)(\partial m)^{-1}(\partial' n)^{-1}$$ arising from two crossed modules \(\partial\colon M\rightarrow G\) and \(\partial'\colon N\rightarrow G\) with common target group \(G\). Here \(\otimes\) denotes the nonabelian tensor product introduced by Ronnie Brown and Jean-Louis Loday.

The following two commands construct the crossed modules \(M\hookrightarrow G\) and \(N\hookrightarrow G\) arising from two normal subgroups \(M\), \(N\) of the sylow 2-subgroup \(G=Syl_2(M_{24})\) of the Mathieu group \(M_{24}\), and then compute the homotopy groups \(\pi_i(M\otimes N \rightarrow G)\) for \(i=1,2\).

gap> G:=SylowSubgroup(MathieuGroup(24),2);;
gap> L:=NormalSubgroups(G);;
gap> M:=CrossedModuleByNormalSubgroup(G,L[100]);;
gap> N:=CrossedModuleByNormalSubgroup(G,L[101]);;
gap> T:=NonabelianTensorProduct(M,N);;
gap> StructureDescription(HomotopyGroup(T,1));
"((C2 x ((C2 x C2 x C2 x C2) : C2)) : C2) : C2"
gap> StructureDescription(HomotopyGroup(T,2));
"C2 x C2 x C2 x C2 x C2 x C2 x C2 x C2"

The above construction can be iterated. In particular, one can construct the triple tensor product \((G\otimes G)\otimes G \longrightarrow G\) for any group \(G\). The following commands compute $$\exp((G\otimes G)\otimes G) = 4 \, ,$$ $$|(G\otimes G)\otimes G| = 1073741824 \, ,$$ for \(G\) the 23rd group of order 32 in GAP's library of small groups.

gap> G:=SmallGroup(32,23);;
gap> K:=CrossedModuleByNormalSubgroup(G,G);;
gap> T2:=NonabelianTensorProduct(K,K);;
gap> T3:=NonabelianTensorProduct(T2,K);;
gap> T:=Source(T3!.map);;
gap> Exponent(T);
4
gap> Order(T);
1073741824

Corresponding to the nonabelian tensor product, there is a nonabelian exterior product $$M\wedge N \rightarrow G, m\wedge n \mapsto (\partial m)(\partial'n)(\partial m)^{-1}(\partial' n)^{-1}$$ arising from two crossed modules \(\partial\colon M\rightarrow G\) and \(\partial'\colon N\rightarrow G\) with common target group \(G\). The exterior product is obtained from the tensor product by adding the relation $$m \otimes n = 1\ \ {\rm whenever}\ \partial m=\partial'n\,.$$

This exterior product can be iterated. In particular, one can construct the triple exterior product \((G\wedge G)\wedge G \longrightarrow G\) for any group \(G\). The following commands compute $$\exp((G\wedge G)\wedge G) = 4 \, ,$$ $$|(G\wedge G)\wedge G| = 1024 \, ,$$ for \(G\) the 23rd group of order 32 in GAP's library of small groups.

gap> G:=SmallGroup(32,23);;
gap> K:=CrossedModuleByNormalSubgroup(G,G);;
gap> E2:=NonabelianExteriorProduct(K,K);;
gap> E3:=NonabelianExteriorProduct(E2,K);;
gap> e:=Source(E3!.map);;
gap> Exponent(e);
4
gap> Order(e);
1024