‣ CompositionSeriesOfFpGModules | ( global variable ) |
Inputs an FpG-module M and returns a list of FpG-modules that constitute a composition series for M.
Examples:
‣ DirectSumOfFpGModules ( M, N ) | ( function ) |
‣ DirectSumOfFpGModules ( [M[, 1], M[, 2], ..., M[, k]] ) | ( function ) |
Inputs two FpG-modules M and N with common group and characteristic. It returns the direct sum of M and N as an FpG-Module.
Alternatively, the function can input a list of FpG-modules with common group G. It returns the direct sum of the list.
Examples:
‣ FpGModule ( A, P ) | ( function ) |
‣ FpGModule ( A, G, p ) | ( function ) |
Inputs a p-group P and a matrix A whose rows have length a multiple of the order of G. It returns the canonical
FpG-module generated by the rows of A.
A small non-prime-power group G can also be input, provided the characteristic p is entered as a third input variable.
‣ FpGModuleDualBasis ( M ) | ( function ) |
Inputs an FpG-module M. It returns a record R with two components:
R.freeModule is the free module FG of rank one.
R.basis is a list representing an F-basis for the module Hom_FG(M,FG). Each term in the list is a matrix A whose rows are vectors in FG such that M!.generators[i] ⟶ A[i] extends to a module homomorphism M ⟶ FG.
Examples:
‣ FpGModuleHomomorphism ( M, N, A ) | ( function ) |
‣ FpGModuleHomomorphismNC ( M, N, A ) | ( function ) |
Inputs FpG-modules M and N over a common p-group G. Also inputs a list A of vectors in the vector space spanned by N!.matrix. It tests that the function
M!.generators[i] ⟶ A[i]
extends to a homomorphism of FpG-modules and, if the test is passed, returns the corresponding FpG-module homomorphism. If the test is failed it returns fail.
The "NC" version of the function assumes that the input defines a homomorphism and simply returns the FpG-module homomorphism.
Examples:
‣ DesuspensionFpGModule ( M, n ) | ( function ) |
‣ DesuspensionFpGModule ( R, n ) | ( function ) |
Inputs a positive integer n and and FpG-module M. It returns an FpG-module D^nM which is mathematically related to M via an exact sequence 0 ⟶ D^nM ⟶ R_n ⟶ ... ⟶ R_0 ⟶ M ⟶ 0 where R_∗ is a free resolution. (If G=Group(M) is of prime-power order then the resolution is minimal.)
Alternatively, the function can input a positive integer n and at least n terms of a free resolution R of M.
Examples:
‣ RadicalOfFpGModule ( M ) | ( function ) |
Inputs an FpG-module M with G a p-group, and returns the Radical of M as an FpG-module. (Ig G is not a p-group then a submodule of the radical is returned.
Examples:
‣ RadicalSeriesOfFpGModule ( M ) | ( function ) |
Inputs an FpG-module M and returns a list of FpG-modules that constitute the radical series for M.
Examples:
‣ GeneratorsOfFpGModule ( M ) | ( function ) |
Inputs an FpG-module M and returns a matrix whose rows correspond to a minimal generating set for M.
Examples:
‣ ImageOfFpGModuleHomomorphism ( f ) | ( function ) |
Inputs an FpG-module homomorphism f:M ⟶ N and returns its image f(M) as an FpG-module.
Examples:
‣ GroupAlgebraAsFpGModule ( G ) | ( function ) |
Inputs a p-group G and returns its mod p group algebra as an FpG-module.
Examples:
‣ IntersectionOfFpGModules ( M, N ) | ( function ) |
Inputs two FpG-modules M, N arising as submodules in a common free module (FG)^n where G is a finite group and F the field of p-elements. It returns the FpG-module arising as the intersection of M and N.
Examples:
‣ IsFpGModuleHomomorphismData ( M, N, A ) | ( function ) |
Inputs FpG-modules M and N over a common p-group G. Also inputs a list A of vectors in the vector space spanned by N!.matrix. It returns true if the function
M!.generators[i] ⟶ A[i]
extends to a homomorphism of FpG-modules. Otherwise it returns false.
Examples:
‣ MaximalSubmoduleOfFpGModule ( M ) | ( function ) |
Inputs an FpG-module M and returns one maximal FpG-submodule of M.
Examples:
‣ MaximalSubmodulesOfFpGModule ( M ) | ( function ) |
Inputs an FpG-module M and returns the list of maximal FpG-submodules of M.
Examples:
‣ MultipleOfFpGModule ( w, M ) | ( function ) |
Inputs an FpG-module M and a list w:=[g_1 , ..., g_t] of elements in the group G=M!.group. The list w can be thought of as representing the element w=g_1 + ... + g_t in the group algebra FG, and the function returns a semi-echelon matrix B which is a basis for the vector subspace wM .
Examples:
‣ ProjectedFpGModule ( M, k ) | ( function ) |
Inputs an FpG-module M of ambient dimension n|G|, and an integer k between 1 and n. The module M is a submodule of the free module (FG)^n . Let M_k denote the intersection of M with the last k summands of (FG)^n . The function returns the image of the projection of M_k onto the k-th summand of (FG)^n . This image is returned an FpG-module with ambient dimension |G|.
Examples:
‣ RandomHomomorphismOfFpGModules ( M, N ) | ( function ) |
Inputs two FpG-modules M and N over a common group G. It returns a random matrix A whose rows are vectors in N such that the function
M!.generators[i] ⟶ A[i]
extends to a homomorphism M ⟶ N of FpG-modules. (There is a problem with this function at present.)
Examples:
‣ Rank ( f ) | ( function ) |
Inputs an FpG-module homomorphism f:M ⟶ N and returns the dimension of the image of f as a vector space over the field F of p elements.
‣ SumOfFpGModules ( M, N ) | ( function ) |
Inputs two FpG-modules M, N arising as submodules in a common free module (FG)^n where G is a finite group and F the field of p-elements. It returns the FpG-Module arising as the sum of M and N.
Examples:
‣ SumOp ( f, g ) | ( function ) |
Inputs two FpG-module homomorphisms f,g:M ⟶ N with common sorce and common target. It returns the sum f+g:M ⟶ N . (This operation is also available using "+".
Examples:
‣ VectorsToFpGModuleWords ( M, L ) | ( function ) |
Inputs an FpG-module M and a list L=[v_1,... ,v_k] of vectors in M. It returns a list L'= [x_1,...,x_k] . Each x_j=[[W_1,G_1],...,[W_t,G_t]] is a list of integer pairs corresponding to an expression of v_j as a word
v_j = g_1*w_1 + g_2*w_1 + ... + g_t*w_t
where
g_i=Elements(M!.group)[G_i]
w_i=GeneratorsOfFpGModule(M)[W_i] .
Examples:
generated by GAPDoc2HTML