Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

9 Chain complexes
 9.1  

9 Chain complexes

9.1  

9.1-1 ChainComplex
‣ ChainComplex( T )( function )

Inputs a pure cubical complex, or cubical complex, or simplicial complex T and returns the (often very large) cellular chain complex of T.

Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 

9.1-2 ChainComplexOfPair
‣ ChainComplexOfPair( T, S )( function )

Inputs a pure cubical complex or cubical complex T and contractible subcomplex S. It returns the quotient C(T)/C(S) of cellular chain complexes.

Examples: 1 , 2 

9.1-3 ChevalleyEilenbergComplex
‣ ChevalleyEilenbergComplex( X, n )( function )

Inputs either a Lie algebra X=A (over the ring of integers Z or over a field K) or a homomorphism of Lie algebras X=(f:A ⟶ B), together with a positive integer n. It returns either the first n terms of the Chevalley-Eilenberg chain complex C(A), or the induced map of Chevalley-Eilenberg complexes C(f):C(A) ⟶ C(B).

(The homology of the Chevalley-Eilenberg complex C(A) is by definition the homology of the Lie algebra A with trivial coefficients in Z or K).

This function was written by Pablo Fernandez Ascariz

Examples: 1 

9.1-4 LeibnizComplex
‣ LeibnizComplex( X, n )( function )

Inputs either a Lie or Leibniz algebra X=A (over the ring of integers Z or over a field K) or a homomorphism of Lie or Leibniz algebras X=(f:A ⟶ B), together with a positive integer n. It returns either the first n terms of the Leibniz chain complex C(A), or the induced map of Leibniz complexes C(f):C(A) ⟶ C(B).

(The Leibniz complex C(A) was defined by J.-L.Loday. Its homology is by definition the Leibniz homology of the algebra A).

This function was written by Pablo Fernandez Ascariz

Examples:

9.1-5 SuspendedChainComplex
‣ SuspendedChainComplex( C )( function )

Inputs a chain complex C and returns the chain complex S defined by applying the degree shift S_n = C_n-1 to chain groups and boundary homomorphisms.

Examples: 1 

9.1-6 ReducedSuspendedChainComplex
‣ ReducedSuspendedChainComplex( C )( function )

Inputs a chain complex C and returns the chain complex S defined by applying the degree shift S_n = C_n-1 to chain groups and boundary homomorphisms for all n > 0. The chain complex S has trivial homology in degree 0 and S_0= Z.

Examples: 1 

9.1-7 CoreducedChainComplex
‣ CoreducedChainComplex( C )( function )
‣ CoreducedChainComplex( C, 2 )( function )

Inputs a chain complex C and returns a quasi-isomorphic chain complex D. In many cases the complex D should be smaller than C. If an optional second input argument is set equal to 2 then an alternative method is used for reducing the size of the chain complex.

Examples: 1 

9.1-8 TensorProductOfChainComplexes
‣ TensorProductOfChainComplexes( C, D )( function )

Inputs two chain complexes C and D of the same characteristic and returns their tensor product as a chain complex.

This function was written by Le Van Luyen.

Examples: 1 

9.1-9 LefschetzNumber
‣ LefschetzNumber( F )( function )

Inputs a chain map F: C→ C with common source and target. It returns the Lefschetz number of the map (that is, the alternating sum of the traces of the homology maps in each degree).

Examples:

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind

generated by GAPDoc2HTML