Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

9 Bredon homology
 9.1 Davis complex
 9.2 Arithmetic groups
 9.3 Crystallographic groups

9 Bredon homology

9.1 Davis complex

The following example computes the Bredon homology

underline H_0(W,cal R) = Z^21

for the infinite Coxeter group W associated to the Dynkin diagram shown in the computation, with coefficients in the complex representation ring.

gap> D:=[[1,[2,3]],[2,[3,3]],[3,[4,3]],[4,[5,6]]];;
gap> CoxeterDiagramDisplay(D);

Coxeter diagram

gap> C:=DavisComplex(D);;
gap> D:=TensorWithComplexRepresentationRing(C);;
gap> Homology(D,0);
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

9.2 Arithmetic groups

The following example computes the Bredon homology

underline H_0(SL_2(cal O_-3),cal R) = Z_2⊕ Z^9

underline H_1(SL_2(cal O_-3),cal R) = Z

for cal O_-3 the ring of integers of the number field Q(sqrt-3), and cal R the complex reflection ring.

gap> R:=ContractibleGcomplex("SL(2,O-3)");;
gap> IsRigid(R);
false
gap> S:=BaryCentricSubdivision(R);;
gap> IsRigid(S);
true
gap> C:=TensorWithComplexRepresentationRing(S);;
gap> Homology(C,0);
[ 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
gap> Homology(C,1);
[ 0 ]

9.3 Crystallographic groups

The following example computes the Bredon homology

underline H_0(G,cal R) = Z^17

for G the second crystallographic group of dimension 4 in GAP's library of crystallographic groups, and for cal R the Burnside ring.

gap> G:=SpaceGroup(4,2);;
gap> gens:=GeneratorsOfGroup(G);;
gap> B:=CrystGFullBasis(G);;
gap> R:=CrystGcomplex(gens,B,1);;
gap> IsRigid(R);
false
gap> S:=CrystGcomplex(gens,B,0);;
gap> IsRigid(S);
true
gap> D:=TensorWithBurnsideRing(S);;
gap> Homology(D,0);
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bib Ind

generated by GAPDoc2HTML