[AL70] Atkin, A. and Lehner, J., Hecke operators on Γ_0(m) , Math. Ann. , 185 (1970), 134--160.
[BCNS15] Braun, O., Coulangeon, R., Nebe, G. and Schoennenbeck, S., Computing in arithmetic groups with Voronoï’s algorithm, J. Algebra , 435 (2015), 263--285.
[BE14] Bui, A. and Ellis, G., The homology of SL_2( Z[1/m]) for small m , Journal of Algebra, 408 (2014), 102--108.
[Ber16] Bergeron, N., Torsion homology growth in arithmetic groups , EuropeanMathematical Society, European Congress of Mathematicians, July 18-22 (2016).
[BL87] Brown, R. and Loday, J.-L., Van Kampen theorems for diagrams of spaces , Topology, 26 (1987), 311--335.
[Bro60] Brody, E., The topological classification of the lens spaces , Ann. of Math. 71, 163–184 (1960).
[CKL14] Coeurjolly, D., Kerautret, B. and Lachaud, J.-O., Extraction of Connected Region Boundary in Multidimensional Images , Image Processing On Line (2014).
[DPR91] Dijkgraaf, R., Pasquier, V. and Roche, P., Quasi-Hopf algebras, group cohomology and orbifold models , Nuclear Phys. B Proc. Suppl. 18B, 60-72 (1991).
[EHS06] Ellis, G., Harris, J. and Skoldberg, E., Polytopal resolutions for finite groups , J. Reine Angew. Math., 598 (2006), 131--137.
[Eic57] Eichler, M., Eine Verallgemeinerung der Abelschen Integrale , Mathematische Zeitschrift , 67 (1957), 267--298.
[GM15] Goncalves, D. and Martins, S., Diagonal approximation and the cohomology ring of the fundamental groups of surfaces , European Journal of Mathematics, 1, pp122--137 (2015).
[Gre13] Greene, J., The lens space realization problem , Annals of Mathematics 177, pages 449-511 (2013).
[Hat01] Hatcher, A., Algebraic Topology , Available online (2001).
[Hor00] Horadam, K., An introduction to cocyclic generalised Hadamard matrices , Discrete Applied Math, 102, 115-130 (2000).
[IO01] Igusa, K. and Orr, K. E., Links, pictures and the homology of nilpotent groups , Topology, Volume 40, Issue 6, pp-1125--1166 (2001).
[Joh16] Johnson, F., Syzygies and dihedral resolutions for dihedral groups , Communication in Algebra 44(5), pp 2034-2047 (2016).
[KFM08] Kauffman, L. H. and Faria Martins, J., Invariants of welded virtual knots via crossed module invariants of knotted surfaces, Compos. Math., 144 (4) (2008), 1046--1080.
[Kho01] Kholodna, I., Low-dimensional homotopical syzygies , PhD Thesis, National University of Ireland Galway (2001).
[KS98] Kuz'min, Y. V. and Semenov, Y. S., On the homology of a free nilpotent group of class 2 , Mat. Sb. 189, no. 4, pp 49--82 (1998).
[Kso00] Ksontini, R., Proprietes homotopiques du complexe de Quillen du groupe symetrique, These de doctorat, Universitet de Lausanne (2000).
[Kul91] Kulkarni, R., An arithmetic-geometric method in the study of the subgroups of the modular group , American Journal of Mathematics , 113, No. 6 (1991), 1053--1133.
[LY24a] Liu, C. and Ye, W., Crystallography, Group Cohomology, and Lieb-Schultz-Mattis Constraints, https://arxiv.org/abs/2410.03607/ (2024).
[LY24b] Liu, C. and Ye, W., Space group cohomology and LSM -- a github repository, https://github.com/liuchx1993/Space-Group-Cohomology-and-LSM (2024).
[MFTM01] Martin, D., Fowlkes, C., Tal, D. and Malik, J., A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics , Proc. 8th Int'l Conf. Computer Vision, 2, pp 416--423 (2001).
[Mil58] Milnor, J., On simply connected 4-manifolds, International symposium on algebraic topology, Universidad Nacional Autonoma de Mexico and UNESCO, Mexico City (1958).
[Moi52] Moise, E., Affine structures in 3-manifolds V. The triangulation theorem and Hauptvermu- tung, Annals of Math. 56, 96--114 (1952).
[Mos71] Moser, L., Elementary surgery along a torus knot , Pacific Journal of Mathematics, Vol. 38, No. 3 (1971).
[PY03] Przytycki, J. and Yasukhara, A., Symmetry of links and classification of lens spaces, Geom. Dedicata 98, 57--61 (2003).
[Rah10] Rahm, A., Cohomologies and K-theory of Bianchi groups using computational geometric models , These de doctorat, Universite Joseph-Fourier -- Grenoble I (2010).
[Rei35] Reidemeister, K., Homotopieringe und Linsenraume , Abh. Math. Sem. Univ. Hamburg 11 , 102–109 (1935).
[Sat00] Satoh, S., Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications, 9 (4) (2000), 531--542.
[Sen11] Sengun, M. H., On the Integral Cohomology of Bianchi Groups , Experimental Mathematics , 20(4) (2011), 487--505.
[Shi59] Shimura, G., Sur les integrales attachees aux formes automorphes , Journal of the Mathematical Society of Japan , 67 (1959), 291--311.
[SK11] Spreer, J. and Khuenel, W., Combinatorial properties of the K3 surface: Simplicial blowups and slicings, Experimental Mathematics Volume 20 Issue 2 (2011).
[Ste07] Stein, W., Modular forms, a computational approach , AMS Graduate Studies in Mathematics , 79 (2007).
[Swa60] Swan, R., Periodic resolutions for finite groups , Annals of Mathematics 72, pages 267-291 (1960).
[Swa71a] Swan, R., Generators and relations for certain general linear groups , Advances in Mathematics , 6 (1971), 1--77.
[Swa71b] Swan, R., Generators and relations for certain Special Linear Groups , Advances in Mathematics 6, 1--77 (1971).
[Thu02] Thurston, W., The Geometry and Topology of Three-Manifolds , http://www.msri.org/publications/books/gt3m/ (2002).
[TZ08] Tomoda, S. and Zvengrowski, P., Remarks on the cohomology of finite fundamental groups of 3-manifolds, Geometry and Topology Monographs 14, 519-556 (2008).
[Wie78] Wieser, G., Computational arithmetic of modular forms , Universitat Duisburg-Essen (2007/8).
[Wue92] Wuestner, M., An example of a nonsolvable Lie algebra , Seminar Sophus Lie 2, 57-58 (1992).
generated by GAPDoc2HTML