Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter] 

Index

\(\varepsilon(K,H)\) 9.13
\(e(G,K,H)\) 9.13
\(e_C(G,K,H)\) 9.13
\^ 6.2-2
Abelian Crossed Product 9.8
ActionForCrossedProduct 5.1-1
AntiSymMatUpMat 7.3-1
AverageSum 6.2-3
Basis of units (for crossed product) 9.6
(Brauer) equivalence 9.5
central simple algebra 9.5
Centralizer 6.2-1
CharacterDescent 7.3-2
Classical Crossed Product 9.9
CodeByLeftIdeal 8.1-2
CodeWordByGroupRingElement 8.1-1
CoefficientsAndMagmaElements 5.2-1
Complete set of orthogonal primitive idempotents 9.22
ConvertCyclicAlgToCyclicCyclotomicAlg 7.7-2
ConvertCyclicCyclotomicAlgToCyclicAlg 7.7-3
ConvertQuadraticAlgToQuaternionAlg 7.7-2
ConvertQuaternionAlgToQuadraticAlg 7.7-3
Crossed Product 9.6
CrossedProduct 5.1-1
Cyclic Algebra 9.10
Cyclic Crossed Product 9.7
Cyclotomic algebra 9.11
cyclotomic class 9.19
CyclotomicAlgebraAsSCAlgebra 7.1-4
CyclotomicAlgebraWithDivAlgPart 7.1-2
CyclotomicClasses 6.3-1
CyclotomicExtensionGenerator 7.3-1
DecomposeCyclotomicAlgebra 7.7-1
DefectGroupOfConjugacyClassAtP 7.5-5
DefectGroupsOfPBlock 7.5-5
DefectOfCharacterAtP 7.5-5
DefiningCharacterOfCyclotomicAlgebra 7.5-3
DefiningGroupAndCharacterOfCyclotAlg 7.5-3
DefiningGroupOfCyclotomicAlgebra 7.5-3
ElementOfCrossedProduct 5.2-1
Embedding 5.2-1
equivalence (Brauer) 9.5
equivalent extremely strong Shoda pairs 9.16
equivalent strong Shoda pairs 9.15
extremely strong Shoda pair 9.16
ExtremelyStrongShodaPairs 3.1-1
field of character values 9.4
FinFieldExt 7.5-6
GaloisRepsOfCharacters 7.3-3
generating cyclotomic class 9.19
GlobalCharacterDescent 7.3-2
GlobalSchurIndexFromLocalIndices 7.6-1
GlobalSplittingOfCyclotomicAlgebra 7.3-1
group algebra 9.1
group code 9.23
group ring 9.1
InfoWedderga 6.4-1
IsCompleteSetOfOrthogonalIdempotents 4.2-1
IsCrossedProduct 5.1-1
IsCrossedProductObjDefaultRep 5.2-1
IsCyclotomicClass 6.3-2
IsDyadicSchurGroup 7.5-7
IsElementOfCrossedProduct 5.2-1
IsExtremelyStrongShodaPair 3.3-1
IsNormallyMonomial 3.3-5
IsRationalQuaternionAlgebraADivisionRing 7.6-2
IsSemisimpleANFGroupAlgebra 6.1-3
IsSemisimpleFiniteGroupAlgebra 6.1-4
IsSemisimpleRationalGroupAlgebra 6.1-2
IsSemisimpleZeroCharacteristicGroupAlgebra 6.1-1
IsShodaPair 3.3-3
IsStronglyMonomial 3.3-4
IsStrongShodaPair 3.3-2
IsTwistingTrivial 6.1-5
KillingCocycle 7.3-1
LeftActingDomain 5.1-1
linear code 9.23
LocalIndexAtInfty 7.4-2
LocalIndexAtInftyByCharacter 7.5-4
LocalIndexAtOddP 7.4-2
LocalIndexAtOddPByCharacter 7.5-7
LocalIndexAtPByBrauerCharacter 7.5-6
LocalIndexAtTwo 7.4-2
LocalIndexAtTwoByCharacter 7.5-7
LocalIndicesOfCyclicCyclotomicAlgebra 7.4-1
LocalIndicesOfCyclotomicAlgebra 7.5-1
LocalIndicesOfRationalQuaternionAlgebra 7.6-1
LocalIndicesOfRationalSymbolAlgebra 7.6-1
LocalIndicesOfTensorProductOfQuadraticAlgs 7.6-1
normally monomial character 9.18
normally monomial group 9.18
OnPoints 6.2-2
PDashPartOfN 7.2-1
PPartOfN 7.2-1
primitive central idempotent 9.4
primitive central idempotent realized by a Shoda pair 9.14
primitive central idempotent realized by a strong Shoda pair and a cyclotomic class 9.19
PrimitiveCentralIdempotentsByCharacterTable 4.1-1
PrimitiveCentralIdempotentsByESSP 4.3-1
PrimitiveCentralIdempotentsBySP 4.3-3
PrimitiveCentralIdempotentsByStrongSP 4.3-2
PrimitiveIdempotentsNilpotent 4.4-1
PrimitiveIdempotentsTrivialTwisting 4.4-2
PSplitSubextension 7.2-2
Quaternion algebra 5.1-1
RamificationIndexAtP 7.2-3
ReducingCyclotomicAlgebra 7.3-1
ResidueDegreeAtP 7.2-3
RootOfDimensionOfCyclotomicAlgebra 7.5-2
SchurIndex 7.1-3
SchurIndexByCharacter 7.1-3
semisimple ring 9.2
Shoda pair 9.14
SimpleAlgebraByCharacter 2.2-1
SimpleAlgebraByCharacterInfo 2.2-2
SimpleAlgebraByStrongSP, for rational group algebra 2.2-3
    for semisimple finite group algebra 2.2-3
SimpleAlgebraByStrongSPInfo, for rational group algebra 2.2-4
    for semisimple finite group algebra 2.2-4
SimpleAlgebraByStrongSPInfoNC, for rational group algebra 2.2-4
    for semisimple finite group algebra 2.2-4
SimpleAlgebraByStrongSPNC, for rational group algebra 2.2-3
    for semisimple finite group algebra 2.2-3
SimpleComponentByCharacterAsSCAlgebra 7.1-4
SimpleComponentByCharacterDescent 7.3-2
SimpleComponentOfGroupRingByCharacter 7.5-3
strongly monomial character 9.17
strongly monomial group 9.17
SplittingDegreeAtP 7.2-3
strong Shoda pair 9.15
StrongShodaPairs 3.2-1
TwistingForCrossedProduct 5.1-1
UnderlyingMagma 5.1-1
Wedderburn components 9.3
Wedderburn decomposition 9.3
WedderburnDecomposition 2.1-1
WedderburnDecompositionAsSCAlgebras 7.1-4
WedderburnDecompositionByCharacterDescent 7.3-4
WedderburnDecompositionInfo 2.1-2
WedderburnDecompositionWithDivAlgParts 7.1-1
Wedderga package .-1
ZeroCoefficient 5.2-1

 [Top of Book]  [Contents]   [Previous Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind

generated by GAPDoc2HTML