\^
6.2-2 ActionForCrossedProduct
5.1-1 AntiSymMatUpMat
7.3-1 AverageSum
6.2-3 Centralizer
6.2-1 CharacterDescent
7.3-2 CodeByLeftIdeal
8.1-2 CodeWordByGroupRingElement
8.1-1 ConvertCyclicAlgToCyclicCyclotomicAlg
7.7-2 ConvertCyclicCyclotomicAlgToCyclicAlg
7.7-3 ConvertQuadraticAlgToQuaternionAlg
7.7-2 ConvertQuaternionAlgToQuadraticAlg
7.7-3 CrossedProduct
5.1-1 CyclotomicAlgebraAsSCAlgebra
7.1-4 CyclotomicAlgebraWithDivAlgPart
7.1-2 CyclotomicClasses
6.3-1 CyclotomicExtensionGenerator
7.3-1 DecomposeCyclotomicAlgebra
7.7-1 DefectGroupOfConjugacyClassAtP
7.5-5 DefectGroupsOfPBlock
7.5-5 DefectOfCharacterAtP
7.5-5 DefiningCharacterOfCyclotomicAlgebra
7.5-3 DefiningGroupAndCharacterOfCyclotAlg
7.5-3 DefiningGroupOfCyclotomicAlgebra
7.5-3 ElementOfCrossedProduct
5.2-1 Embedding
5.2-1 ExtremelyStrongShodaPairs
3.1-1 FinFieldExt
7.5-6 GaloisRepsOfCharacters
7.3-3 GlobalCharacterDescent
7.3-2 GlobalSchurIndexFromLocalIndices
7.6-1 GlobalSplittingOfCyclotomicAlgebra
7.3-1 InfoWedderga
6.4-1 IsCompleteSetOfOrthogonalIdempotents
4.2-1 IsCrossedProduct
5.1-1 IsCrossedProductObjDefaultRep
5.2-1 IsCyclotomicClass
6.3-2 IsDyadicSchurGroup
7.5-7 IsElementOfCrossedProduct
5.2-1 IsExtremelyStrongShodaPair
3.3-1 IsNormallyMonomial
3.3-5 IsRationalQuaternionAlgebraADivisionRing
7.6-2 IsSemisimpleANFGroupAlgebra
6.1-3 IsSemisimpleFiniteGroupAlgebra
6.1-4 IsSemisimpleRationalGroupAlgebra
6.1-2 IsSemisimpleZeroCharacteristicGroupAlgebra
6.1-1 IsShodaPair
3.3-3 IsStronglyMonomial
3.3-4 IsStrongShodaPair
3.3-2 IsTwistingTrivial
6.1-5 KillingCocycle
7.3-1 LeftActingDomain
5.1-1 LocalIndexAtInfty
7.4-2 LocalIndexAtInftyByCharacter
7.5-4 LocalIndexAtOddP
7.4-2 LocalIndexAtOddPByCharacter
7.5-7 LocalIndexAtPByBrauerCharacter
7.5-6 LocalIndexAtTwo
7.4-2 LocalIndexAtTwoByCharacter
7.5-7 LocalIndicesOfCyclicCyclotomicAlgebra
7.4-1 LocalIndicesOfCyclotomicAlgebra
7.5-1 LocalIndicesOfRationalQuaternionAlgebra
7.6-1 LocalIndicesOfRationalSymbolAlgebra
7.6-1 LocalIndicesOfTensorProductOfQuadraticAlgs
7.6-1 OnPoints
6.2-2 PDashPartOfN
7.2-1 PPartOfN
7.2-1 PrimitiveCentralIdempotentsByCharacterTable
4.1-1 PrimitiveCentralIdempotentsByESSP
4.3-1 PrimitiveCentralIdempotentsBySP
4.3-3 PrimitiveCentralIdempotentsByStrongSP
4.3-2 PrimitiveIdempotentsNilpotent
4.4-1 PrimitiveIdempotentsTrivialTwisting
4.4-2 PSplitSubextension
7.2-2 RamificationIndexAtP
7.2-3 ReducingCyclotomicAlgebra
7.3-1 ResidueDegreeAtP
7.2-3 RootOfDimensionOfCyclotomicAlgebra
7.5-2 SchurIndex
7.1-3 SchurIndexByCharacter
7.1-3 SimpleAlgebraByCharacter
2.2-1 SimpleAlgebraByCharacterInfo
2.2-2 SimpleAlgebraByStrongSP
, for rational group algebra 2.2-3 SimpleAlgebraByStrongSPInfo
, for rational group algebra 2.2-4 SimpleAlgebraByStrongSPInfoNC
, for rational group algebra 2.2-4 SimpleAlgebraByStrongSPNC
, for rational group algebra 2.2-3 SimpleComponentByCharacterAsSCAlgebra
7.1-4 SimpleComponentByCharacterDescent
7.3-2 SimpleComponentOfGroupRingByCharacter
7.5-3 SplittingDegreeAtP
7.2-3 StrongShodaPairs
3.2-1 TwistingForCrossedProduct
5.1-1 UnderlyingMagma
5.1-1 WedderburnDecomposition
2.1-1 WedderburnDecompositionAsSCAlgebras
7.1-4 WedderburnDecompositionByCharacterDescent
7.3-4 WedderburnDecompositionInfo
2.1-2 WedderburnDecompositionWithDivAlgParts
7.1-1 ZeroCoefficient
5.2-1
generated by GAPDoc2HTML