‣ IsSemisimpleZeroCharacteristicGroupAlgebra ( KG ) | ( property ) |
The input must be a group ring.
Returns true
if the input KG is a semisimple group algebra (9.2) over a field of characteristic zero (that is if \(G\) is finite), and false
otherwise.
gap> CG:=GroupRing( GaussianRationals, DihedralGroup(16) );; gap> IsSemisimpleZeroCharacteristicGroupAlgebra( CG ); true gap> FG:=GroupRing( GF(2), SymmetricGroup(3) );; gap> IsSemisimpleZeroCharacteristicGroupAlgebra( FG ); false gap> f := FreeGroup("a"); <free group on the generators [ a ]> gap> Qf:=GroupRing(Rationals,f); <algebra-with-one over Rationals, with 2 generators> gap> IsSemisimpleZeroCharacteristicGroupAlgebra(Qf); false
‣ IsSemisimpleRationalGroupAlgebra ( KG ) | ( property ) |
The input must be a group ring.
Returns true
if KG is a semisimple rational group algebra (9.2) and false
otherwise.
gap> QG:=GroupRing( Rationals, SymmetricGroup(4) );; gap> IsSemisimpleRationalGroupAlgebra( QG ); true gap> CG:=GroupRing( GaussianRationals, DihedralGroup(16) );; gap> IsSemisimpleRationalGroupAlgebra( CG ); false gap> FG:=GroupRing( GF(2), SymmetricGroup(3) );; gap> IsSemisimpleRationalGroupAlgebra( FG ); false
‣ IsSemisimpleANFGroupAlgebra ( KG ) | ( property ) |
The input must be a group ring.
Returns true
if KG is the group algebra of a finite group over a subfield of a cyclotomic extension of the rationals and false
otherwise.
gap> IsSemisimpleANFGroupAlgebra( GroupRing( NF(5,[4]) , CyclicGroup(28) ) ); true gap> IsSemisimpleANFGroupAlgebra( GroupRing( GF(11) , CyclicGroup(28) ) ); false
‣ IsSemisimpleFiniteGroupAlgebra ( KG ) | ( property ) |
The input must be a group ring.
Returns true
if KG is a semisimple finite group algebra (9.2), that is a group algebra of a finite group \(G\) over a field \(K\) of order coprime to the order of \(G\), and false
otherwise.
gap> FG:=GroupRing( GF(5), SymmetricGroup(3) );; gap> IsSemisimpleFiniteGroupAlgebra( FG ); true gap> KG:=GroupRing( GF(2), SymmetricGroup(3) );; gap> IsSemisimpleFiniteGroupAlgebra( KG ); false gap> QG:=GroupRing( Rationals, SymmetricGroup(4) );; gap> IsSemisimpleFiniteGroupAlgebra( QG ); false
‣ IsTwistingTrivial ( G, H, K ) | ( property ) |
The input must be a group and a strong Shoda pair of the group.
Returns true
if the simple algebra \(ℚGe(G,H,K)\) has a trivial twisting (9.15), and false
otherwise.
gap> G:=DihedralGroup(8);; gap> H:=StrongShodaPairs(G)[5][1]; Group([ f1*f2*f3, f3 ]) gap> K:=StrongShodaPairs(G)[5][2]; Group([ f1*f2 ]) gap> IsTwistingTrivial(G,H,K); true
‣ Centralizer ( G, x ) | ( operation ) |
Returns: A subgroup of a group G.
The input should be formed by a finite group G and an element x of a group ring \(FH\) whose underlying group \(H\) contains G as a subgroup.
Returns the centralizer of x in G.
This operation adds a new method to the operation that already exists in GAP.
gap> D16 := DihedralGroup(16); <pc group of size 16 with 4 generators> gap> QD16 := GroupRing( Rationals, D16 ); <algebra-with-one over Rationals, with 4 generators> gap> a:=QD16.1;b:=QD16.2; (1)*f1 (1)*f2 gap> e := PrimitiveCentralIdempotentsByStrongSP( QD16)[3];; gap> Centralizer( D16, a); Group([ f1, f4 ]) gap> Centralizer( D16, b); Group([ f2 ]) gap> Centralizer( D16, a+b); Group([ f4 ]) gap> Centralizer( D16, e); Group([ f1, f2 ])
‣ OnPoints ( x, g ) | ( operation ) |
‣ \^ ( x, g ) | ( operation ) |
Returns: An element of a group ring.
The input should be formed by an element x of a group ring \(FG\) and an element g in the underlying group \(G\) of \(FG\).
Returns the conjugate \(x^g = g^{-1} x g\) of x by g. Usage of x^g
produces the same output.
This operation adds a new method to the operation that already exists in GAP.
The following example is a continuation of the example from the description of Centralizer
(6.2-1).
gap> ForAll(D16,x->a^x=a); false gap> ForAll(D16,x->e^x=e); true
‣ AverageSum ( RG, X ) | ( operation ) |
Returns: An element of a group ring.
The input must be composed of a group ring RG and a finite subset X of the underlying group \(G\) of RG. The order of X must be invertible in the coefficient ring \(R\) of RG.
Returns the element of the group ring RG that is equal to the sum of all elements of X divided by the order of X.
If X is a subgroup of \(G\) then the output is an idempotent of \(RG\) which is central if and only if X is normal in \(G\).
gap> G:=DihedralGroup(16);; gap> QG:=GroupRing( Rationals, G );; gap> FG:=GroupRing( GF(5), G );; gap> e:=AverageSum( QG, DerivedSubgroup(G) ); (1/4)*<identity> of ...+(1/4)*f3+(1/4)*f4+(1/4)*f3*f4 gap> f:=AverageSum( FG, DerivedSubgroup(G) ); (Z(5)^2)*<identity> of ...+(Z(5)^2)*f3+(Z(5)^2)*f4+(Z(5)^2)*f3*f4 gap> G=Centralizer(G,e); true gap> H:=Subgroup(G,[G.1]); Group([ f1 ]) gap> e:=AverageSum( QG, H ); (1/2)*<identity> of ...+(1/2)*f1 gap> G=Centralizer(G,e); false gap> IsNormal(G,H); false
‣ CyclotomicClasses ( q, n ) | ( operation ) |
Returns: A partition of \([ 0 .. n ]\).
The input should be formed by two relatively prime positive integers.
Returns the list q-cyclotomic classes (9.19) modulo n.
gap> CyclotomicClasses( 2, 21 ); [ [ 0 ], [ 1, 2, 4, 8, 16, 11 ], [ 3, 6, 12 ], [ 5, 10, 20, 19, 17, 13 ], [ 7, 14 ], [ 9, 18, 15 ] ] gap> CyclotomicClasses( 10, 21 ); [ [ 0 ], [ 1, 10, 16, 13, 4, 19 ], [ 2, 20, 11, 5, 8, 17 ], [ 3, 9, 6, 18, 12, 15 ], [ 7 ], [ 14 ] ]
‣ IsCyclotomicClass ( q, n, C ) | ( operation ) |
The input should be formed by two relatively prime positive integers q and n and a sublist C of \([ 0 .. n ]\).
Returns true
if C is a q-cyclotomic class (9.19) modulo n and false
otherwise.
gap> IsCyclotomicClass( 2, 7, [1,2,4] ); true gap> IsCyclotomicClass( 2, 21, [1,2,4] ); false gap> IsCyclotomicClass( 2, 21, [3,6,12] ); true
‣ InfoWedderga | ( info class ) |
InfoWedderga
is a special Info class for Wedderga algorithms. It has 3 levels: 0, 1 (default) and 2. To change the info level to k
, use the command SetInfoLevel(InfoWedderga, k)
.
In the example below we use this mechanism to see more details about the Wedderburn components each time when we call WedderburnDecomposition
.
gap> SetInfoLevel(InfoWedderga, 2); gap> WedderburnDecomposition( GroupRing( CF(5), DihedralGroup( 16 ) ) ); #I Info version : [ [ 1, CF(5) ], [ 1, CF(5) ], [ 1, CF(5) ], [ 1, CF(5) ], [ 2, CF(5) ], [ 2, NF(40,[ 1, 31 ]) ] ] [ CF(5), CF(5), CF(5), CF(5), ( CF(5)^[ 2, 2 ] ), <crossed product with center NF(40,[ 1, 31 ]) over AsField( NF(40, [ 1, 31 ]), CF(40) ) of a group of size 2> ]
generated by GAPDoc2HTML