Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

8 Applications of the Wedderga package
 8.1 Coding theory applications

8 Applications of the Wedderga package

8.1 Coding theory applications

8.1-1 CodeWordByGroupRingElement
‣ CodeWordByGroupRingElement( F, S, a )( operation )

Returns: The code word of length the length of S associated to the group ring element a.

The input F should be a finite field. The input S is a fixed ordering of a group \(G\) and a is an element in the group algebra \(FG\).

Each element \(c\) in \(FG\) is of the form \( c=\sum_{i=1}^n f_i g_i\), where we fix an ordering \(\{g_1,g_2,...,g_n \}\) of the group elements of \(G\) and \(f_i\in F\). If we look at \(c\) as a codeword, we will write \([f_1 f_2 ... f_n]\). (9.23).


gap> G:=DihedralGroup(8);;
gap> F:=GF(3);;          
gap> FG:=GroupRing(F,G);;
gap> a:=AsList(FG)[27];
(Z(3)^0)*<identity> of ...+(Z(3)^0)*f1+(Z(3)^0)*f2+(Z(3)^0)*f3+(Z(3)^
0)*f1*f2+(Z(3)^0)*f2*f3+(Z(3))*f1*f2*f3
gap> S:=AsSet(G);
[ <identity> of ..., f1, f2, f3, f1*f2, f1*f3, f2*f3, f1*f2*f3 ]
gap> CodeWordByGroupRingElement(F,S,a);
[ Z(3)^0, Z(3)^0, Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3), Z(3)^0, Z(3) ]

8.1-2 CodeByLeftIdeal
‣ CodeByLeftIdeal( F, G, S, I )( operation )

Returns: All code words of length the length of S associated to the group ring elements in the ideal I of FG.

The input F should be a finite field. The input S is a fixed ordering of a group \(G\) and I is a left ideal of the group algebra \(FG\).

Each element \(c\) in \(FG\) is of the form \( c=\sum_{i=1}^n f_i g_i\), where we fix an ordering \(\{g_1,g_2,...,g_n \}\) of the group elements of \(G\) and \(f_i\in F\). If we look at \(c\) as a codeword, we will write \([f_1 f_2 ... f_n]\). (9.23).


gap> G:=DihedralGroup(8);;
gap> F:=GF(3);;          
gap> FG:=GroupRing(F,G);;
gap> S:=AsSet(G);
[ <identity> of ..., f1, f2, f3, f1*f2, f1*f3, f2*f3, f1*f2*f3 ]
gap> H:=StrongShodaPairs(G)[5][1];
Group([ f1*f2*f3, f3 ])
gap> K:=StrongShodaPairs(G)[5][2];
Group([ f1*f2 ])
gap> N:=Normalizer(G,K);
Group([ f1*f2*f3, f3 ])
gap> epi:=NaturalHomomorphismByNormalSubgroup(N,K);
[ f1*f2*f3, f3 ] -> [ f1, f1 ]
gap> QHK:=Image(epi,H);
Group([ f1, f1 ])
gap> gq:=MinimalGeneratingSet(QHK)[1];
f1
gap> C:=CyclotomicClasses(Size(F),Index(H,K))[2];
[ 1 ]
gap> e:=PrimitiveIdempotentsNilpotent(FG,H,K,C,[epi,gq]);   
[ (Z(3)^0)*<identity> of ...+(Z(3))*f3+(Z(3)^0)*f1*f2+(Z(3))*f1*f2*f3, 
  (Z(3)^0)*<identity> of ...+(Z(3))*f3+(Z(3))*f1*f2+(Z(3)^0)*f1*f2*f3 ]
gap> FGe := LeftIdealByGenerators(FG,[e[1]]);;
gap> V := VectorSpace(F,CodeByLeftIdeal(F,G,S,FGe));;
gap> B := Basis(V);;
gap> LoadPackage("guava");;
gap> code := GeneratorMatCode(B,F);
a linear [8,2,1..4]4..5 code defined by generator matrix over GF(3)
gap> MinimumDistance(code);
4

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind

generated by GAPDoc2HTML