[And00] Andaloro, P., On Total Stopping Times under 3x+1 Iteration, Fibonacci Quarterly, 38 (2000), 73-78.
[Bar15]   Bartholdi, L.,
 
    FR -- Computations with functionally recursive groups. Version 2.2.1
  
 (2015)
(
    GAP package, https://www.gap-system.org/Packages/fr.html
  ).
[dlH00] de la Harpe, P., Topics in Geometric Group Theory, Chicago Lectures in Mathematics (2000).
[EHN13]   Eick, B., Horn, M. and Nickel, W.,
 
    Polycyclic -- Computation with polycyclic groups (Version 2.11)
  
 (2013)
(
    GAP package, https://www.gap-system.org/Packages/polycyclic.html
  ).
[GKW16]   Gutsche, S., Kohl, S. and Wensley, C.,
 
    Utils - Utility functions in GAP (Version 0.38)
  
 (2016)
(
    GAP package, https://www.gap-system.org/Packages/utils.html
  ).
[Gri80] Grigorchuk, R. I., Burnside's Problem on Periodic Groups, Functional Anal. Appl., 14 (1980), 41-43.
[GT02] Gluck, D. and Taylor, B. D., A New Statistic for the 3x+1 Problem, Proc. Amer. Math. Soc., 130 (5) (2002), 1293-1301.
[HEO05] Holt, D. F., Eick, B. and O'Brien, E. A., Handbook of Computational Group Theory, Chapman & Hall / CRC, Boca Raton, FL, Discrete Mathematics and its Applications (Boca Raton) (2005), xvi+514 pages.
[Hig74] Higman, G., Finitely Presented Infinite Simple Groups, Department of Pure Mathematics, Australian National University, Canberra, Notes on Pure Mathematics (1974).
[Kel99] Keller, T. P., Finite Cycles of Certain Periodically Linear Permutations, Missouri J. Math. Sci., 11 (3) (1999), 152-157.
[Koh05]   Kohl, S.,
 Restklassenweise affine Gruppen,
 Dissertation,
 Universität Stuttgart
 (2005)
(https://d-nb.info/977164071).
[Koh07a]   Kohl, S.,
 
    Graph Theoretical Criteria for the Wildness of Residue-Class-Wise Affine Permutations
  
 (2007)
(
    Preprint (short note),
    https://www.gap-system.org/DevelopersPages/StefanKohl/preprints/graphcrit.pdf
  ).
[Koh07b]   Kohl, S.,
 
    Wildness of Iteration of Certain Residue-Class-Wise Affine Mappings
  ,
 Adv. in Appl. Math.,
 39 (3)
 (2007),
 322-328
(DOI: 10.1016/j.aam.2006.08.003).
[Koh08]   Kohl, S.,
 
    Algorithms for a Class of Infinite Permutation Groups
  ,
 J. Symb. Comput.,
 43 (8)
 (2008),
 545-581
(DOI: 10.1016/j.jsc.2007.12.001).
[Koh10]   Kohl, S.,
 
    A Simple Group Generated by Involutions Interchanging Residue Classes
    of the Integers
  ,
 Math. Z.,
 264 (4)
 (2010),
 927-938
(DOI: 10.1007/s00209-009-0497-8).
[Koh13]   Kohl, S.,
 
    Simple Groups Generated by Involutions Interchanging
    Residue Classes Modulo Lattices in Z^d
  ,
 J. Group Theory,
 16 (1)
 (2013),
 81-86
(DOI: 10.1515/jgt-2012-0031).
[Lag03]   Lagarias, J. C.,
 The 3x+1 Problem: An Annotated Bibliography
 (2003+)
(
    https://arxiv.org/abs/math.NT/0309224 (Part I),
    https://arxiv.org/abs/math.NT/0608208 (Part II)
  ).
[LN12]   Lübeck, F. and Neunhöffer, M.,
 GAPDoc (Version 1.5.1),
 RWTH Aachen
 (2012)
(
    GAP package, https://www.gap-system.org/Packages/gapdoc.html
  ).
[ML87] Matthews, K. R. and Leigh, G. M., A Generalization of the Syracuse Algorithm in GF(q)[x] , J. Number Theory, 25 (1987), 274-278.
[Soi16]   Soicher, L.,
 GRAPE -- GRaph Algorithms using PErmutation groups (Version 4.7),
 Queen Mary, University of London
 (2016)
(
    GAP package, https://www.gap-system.org/Packages/grape.html
  ).
generated by GAPDoc2HTML