Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[And00] Andaloro, P., On Total Stopping Times under \(3x+1\) Iteration, Fibonacci Quarterly, 38 (2000), 73-78.

[Bar15] Bartholdi, L., FR -- Computations with functionally recursive groups. Version 2.2.1 (2015)
( GAP package, https://www.gap-system.org/Packages/fr.html ).

[dlH00] de la Harpe, P., Topics in Geometric Group Theory, Chicago Lectures in Mathematics (2000).

[EHN13] Eick, B., Horn, M. and Nickel, W., Polycyclic -- Computation with polycyclic groups (Version 2.11) (2013)
( GAP package, https://www.gap-system.org/Packages/polycyclic.html ).

[GKW16] Gutsche, S., Kohl, S. and Wensley, C., Utils - Utility functions in GAP (Version 0.38) (2016)
( GAP package, https://www.gap-system.org/Packages/utils.html ).

[Gri80] Grigorchuk, R. I., Burnside's Problem on Periodic Groups, Functional Anal. Appl., 14 (1980), 41-43.

[GT02] Gluck, D. and Taylor, B. D., A New Statistic for the \(3x+1\) Problem, Proc. Amer. Math. Soc., 130 (5) (2002), 1293-1301.

[HEO05] Holt, D. F., Eick, B. and O'Brien, E. A., Handbook of Computational Group Theory, Chapman & Hall / CRC, Boca Raton, FL, Discrete Mathematics and its Applications (Boca Raton) (2005), xvi+514 pages.

[Hig74] Higman, G., Finitely Presented Infinite Simple Groups, Department of Pure Mathematics, Australian National University, Canberra, Notes on Pure Mathematics (1974).

[Kel99] Keller, T. P., Finite Cycles of Certain Periodically Linear Permutations, Missouri J. Math. Sci., 11 (3) (1999), 152-157.

[Koh05] Kohl, S., Restklassenweise affine Gruppen, Dissertation, Universität Stuttgart (2005)
(https://d-nb.info/977164071).

[Koh07a] Kohl, S., Graph Theoretical Criteria for the Wildness of Residue-Class-Wise Affine Permutations (2007)
( Preprint (short note), https://www.gap-system.org/DevelopersPages/StefanKohl/preprints/graphcrit.pdf ).

[Koh07b] Kohl, S., Wildness of Iteration of Certain Residue-Class-Wise Affine Mappings , Adv. in Appl. Math., 39 (3) (2007), 322-328
(DOI: 10.1016/j.aam.2006.08.003).

[Koh08] Kohl, S., Algorithms for a Class of Infinite Permutation Groups , J. Symb. Comput., 43 (8) (2008), 545-581
(DOI: 10.1016/j.jsc.2007.12.001).

[Koh10] Kohl, S., A Simple Group Generated by Involutions Interchanging Residue Classes of the Integers , Math. Z., 264 (4) (2010), 927-938
(DOI: 10.1007/s00209-009-0497-8).

[Koh13] Kohl, S., Simple Groups Generated by Involutions Interchanging Residue Classes Modulo Lattices in \(\mathbb{Z}^d\) , J. Group Theory, 16 (1) (2013), 81-86
(DOI: 10.1515/jgt-2012-0031).

[Lag03] Lagarias, J. C., The 3x+1 Problem: An Annotated Bibliography (2003+)
( https://arxiv.org/abs/math.NT/0309224 (Part I), https://arxiv.org/abs/math.NT/0608208 (Part II) ).

[LN12] Lübeck, F. and Neunhöffer, M., GAPDoc (Version 1.5.1), RWTH Aachen (2012)
( GAP package, https://www.gap-system.org/Packages/gapdoc.html ).

[ML87] Matthews, K. R. and Leigh, G. M., A Generalization of the Syracuse Algorithm in GF(\(q\))[\(x\)] , J. Number Theory, 25 (1987), 274-278.

[Soi16] Soicher, L., GRAPE -- GRaph Algorithms using PErmutation groups (Version 4.7), Queen Mary, University of London (2016)
( GAP package, https://www.gap-system.org/Packages/grape.html ).

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind

generated by GAPDoc2HTML