[And00] Andaloro, P., On Total Stopping Times under \(3x+1\) Iteration, Fibonacci Quarterly, 38 (2000), 73-78.
[Bar15] Bartholdi, L.,
FR -- Computations with functionally recursive groups. Version 2.2.1
(2015)
(
GAP package, https://www.gap-system.org/Packages/fr.html
).
[dlH00] de la Harpe, P., Topics in Geometric Group Theory, Chicago Lectures in Mathematics (2000).
[EHN13] Eick, B., Horn, M. and Nickel, W.,
Polycyclic -- Computation with polycyclic groups (Version 2.11)
(2013)
(
GAP package, https://www.gap-system.org/Packages/polycyclic.html
).
[GKW16] Gutsche, S., Kohl, S. and Wensley, C.,
Utils - Utility functions in GAP (Version 0.38)
(2016)
(
GAP package, https://www.gap-system.org/Packages/utils.html
).
[Gri80] Grigorchuk, R. I., Burnside's Problem on Periodic Groups, Functional Anal. Appl., 14 (1980), 41-43.
[GT02] Gluck, D. and Taylor, B. D., A New Statistic for the \(3x+1\) Problem, Proc. Amer. Math. Soc., 130 (5) (2002), 1293-1301.
[HEO05] Holt, D. F., Eick, B. and O'Brien, E. A., Handbook of Computational Group Theory, Chapman & Hall / CRC, Boca Raton, FL, Discrete Mathematics and its Applications (Boca Raton) (2005), xvi+514 pages.
[Hig74] Higman, G., Finitely Presented Infinite Simple Groups, Department of Pure Mathematics, Australian National University, Canberra, Notes on Pure Mathematics (1974).
[Kel99] Keller, T. P., Finite Cycles of Certain Periodically Linear Permutations, Missouri J. Math. Sci., 11 (3) (1999), 152-157.
[Koh05] Kohl, S.,
Restklassenweise affine Gruppen,
Dissertation,
Universität Stuttgart
(2005)
(https://d-nb.info/977164071).
[Koh07a] Kohl, S.,
Graph Theoretical Criteria for the Wildness of Residue-Class-Wise Affine Permutations
(2007)
(
Preprint (short note),
https://www.gap-system.org/DevelopersPages/StefanKohl/preprints/graphcrit.pdf
).
[Koh07b] Kohl, S.,
Wildness of Iteration of Certain Residue-Class-Wise Affine Mappings
,
Adv. in Appl. Math.,
39 (3)
(2007),
322-328
(DOI: 10.1016/j.aam.2006.08.003).
[Koh08] Kohl, S.,
Algorithms for a Class of Infinite Permutation Groups
,
J. Symb. Comput.,
43 (8)
(2008),
545-581
(DOI: 10.1016/j.jsc.2007.12.001).
[Koh10] Kohl, S.,
A Simple Group Generated by Involutions Interchanging Residue Classes
of the Integers
,
Math. Z.,
264 (4)
(2010),
927-938
(DOI: 10.1007/s00209-009-0497-8).
[Koh13] Kohl, S.,
Simple Groups Generated by Involutions Interchanging
Residue Classes Modulo Lattices in \(\mathbb{Z}^d\)
,
J. Group Theory,
16 (1)
(2013),
81-86
(DOI: 10.1515/jgt-2012-0031).
[Lag03] Lagarias, J. C.,
The 3x+1 Problem: An Annotated Bibliography
(2003+)
(
https://arxiv.org/abs/math.NT/0309224 (Part I),
https://arxiv.org/abs/math.NT/0608208 (Part II)
).
[LN12] Lübeck, F. and Neunhöffer, M.,
GAPDoc (Version 1.5.1),
RWTH Aachen
(2012)
(
GAP package, https://www.gap-system.org/Packages/gapdoc.html
).
[ML87] Matthews, K. R. and Leigh, G. M., A Generalization of the Syracuse Algorithm in GF(\(q\))[\(x\)] , J. Number Theory, 25 (1987), 274-278.
[Soi16] Soicher, L.,
GRAPE -- GRaph Algorithms using PErmutation groups (Version 4.7),
Queen Mary, University of London
(2016)
(
GAP package, https://www.gap-system.org/Packages/grape.html
).
generated by GAPDoc2HTML