Goto Chapter: Top 1 2 3 4 5 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

2 Regular graphs
 2.1 Regular graphs
 2.2 Edge-regular graphs
 2.3 Strongly regular graphs

2 Regular graphs

In this chapter we give functions used to identify graphs with various regularity properties and determine their parameters.

2.1 Regular graphs

A graph Γ is regular with parameters (v,k) if Γ is simple and undirected, it has order v, and every vertex of Γ has degree k.

2.1-1 RGParameters
‣ RGParameters( gamma )( function )

Returns: A list or fail.

Given a graph gamma, this function returns the regular graph parameters of gamma. If gamma is not a regular graph, the function returns fail.

    
gap> gamma:=EdgeOrbitsGraph(Group((2,3,4,5)),[[1,2],[2,1]]);;
gap> RGParameters(gamma);
fail
gap> gamma:=HammingGraph(3,4);;                              
gap> RGParameters(gamma);
[ 64, 9 ]
    
  

2.1-2 IsRG
‣ IsRG( gamma )( function )

Returns: true or false.

Given a graph gamma, this function returns true if gamma is a regular graph, and false otherwise.

    
gap> gamma:=NullGraph(Group(()),5);;
gap> IsRG(gamma);
true
gap> gamma:=EdgeOrbitsGraph(Group((2,3,4,5)),[[1,2],[2,1]]);;
gap> IsRG(gamma);
false
gap> gamma:=TriangularGraph(6);;                             
gap> IsRG(gamma);
true
    
  

2.1-3 IsFeasibleRGParameters
‣ IsFeasibleRGParameters( [v, k] )( function )

Returns: true or false.

Given a list of integers of length 2, [v,k], this function returns true if ( v, k ) is a feasible parameter tuple for a regular graph. Otherwise, the function returns false.

The tuple (v, k) is a feasible parameter tuple for a regular graph if it satisfies the following well-known conditions:

Any regular graph must have parameters that satisfy these conditions (see [BCN89]).

    
gap> IsFeasibleRGParameters([15,9]);
false
gap> IsFeasibleRGParameters([16,9]);
true
    
  

2.2 Edge-regular graphs

A graph Γ is edge-regular with parameters (v,k,a) if it is regular with parameters (v,k), it has at least one edge, and every pair of adjacent vertices have exactly a common neighbours.

2.2-1 ERGParameters
‣ ERGParameters( gamma )( function )

Returns: A list or fail.

Given a graph gamma, this function returns the edge-regular graph parameters of gamma. If gamma is not an edge-regular graph, the function returns fail.

    
gap> gamma:=NullGraph(Group(()),5);;
gap> ERGParameters(gamma);
fail
gap> gamma:=JohnsonGraph(7,3);;
gap> ERGParameters(gamma);
[ 35, 12, 5 ]
    
  

2.2-2 IsERG
‣ IsERG( gamma )( function )

Returns: true or false.

Given a graph gamma, this function returns true if gamma is an edge-regular graph, and false otherwise.

    
gap> gamma:=NullGraph(Group(()),5);;
gap> IsERG(gamma);
false
gap> gamma:=JohnsonGraph(7,3);;
gap> IsERG(gamma);
true
    
  

2.2-3 IsFeasibleERGParameters
‣ IsFeasibleERGParameters( [v, k, a] )( function )

Returns: true or false.

Given a list of integers of length 3, [v,k,a], this function returns true if ( v, k, a ) is a feasible parameter tuple for an edge-regular graph. Otherwise, the function returns false.

The tuple ( v, k, a ) is a feasible parameter tuple for an edge-regular graph if it satisfies the following well-known conditions:

Any edge-regular graph must have parameters which satisfy these conditions (see [BCN89]).

    
gap> IsFeasibleERGParameters([15,9,6]);
false
gap> IsFeasibleERGParameters([16,9,4]);
true
    
  

2.3 Strongly regular graphs

A graph Γ is strongly regular with parameters (v,k,a,b) if it is edge-regular with parameters (v,k,a), it has at least one pair of distinct non-adjacent vertices, and every pair of distinct non-adjacent vertices have exactly b common neighbours.

2.3-1 SRGParameters
‣ SRGParameters( gamma )( function )

Returns: A list or fail.

Given a graph gamma, this function returns the strongly regular graph parameters of gamma. If gamma is not a strongly regular graph, the function returns fail.

    
gap> gamma:=CompleteGraph(Group(()),5);;
gap> SRGParameters(gamma);
fail
gap> gamma:=JohnsonGraph(5,3);;            
gap> SRGParameters(gamma);
[ 10, 6, 3, 4 ]
    
  

2.3-2 IsSRG
‣ IsSRG( gamma )( function )

Returns: true or false.

Given a graph gamma, this function returns true if gamma is a strongly regular graph, and false otherwise.

    
gap> gamma:=CompleteGraph(Group(()),5);;
gap> IsSRG(gamma);
false
gap> gamma:=JohnsonGraph(5,3);;         
gap> IsSRG(gamma);
true
    
  

2.3-3 IsFeasibleSRGParameters
‣ IsFeasibleSRGParameters( [v, k, a, b] )( function )

Returns: true or false.

Given a list of integers of length 4, [v,k,a,b], this function returns true if ( v, k, a, b ) is a feasible parameter tuple for a strongly regular graph. Otherwise, this function returns false.

The tuple (v,k,a,b) is a feasible parameter tuple for a strongly regular graph if it satisfies the following well-known conditions:

Any strongly regular graph must have parameters which satisfy these conditions (see [BCN89]).

    
gap> IsFeasibleSRGParameters([15,9,4,7]);
false
gap> IsFeasibleSRGParameters([10,3,0,1]);
true
    
  
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 Bib Ind

generated by GAPDoc2HTML