Goto Chapter: Top 1 2 3 4 5 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[BEW15] Banks, C., Elder, M. and Willis, G., Simple groups of automorphisms of trees determined by their actions on finite subtrees, Journal of Group Theory, 18 (2) (2015), 235--261.

[BM00] Burger, M. and Mozes, S., Groups acting on trees: from local to global structure, Publications Math{\'e}matiques de l'IH{\'E}S, Springer, 92 (1) (2000), 113--150.

[KM08] Kr{\"o}n, B. and M{\"o}ller, R., Analogues of Cayley graphs for topological groups, Mathematische Zeitschrift, Springer, 258 (3) (2008), 637.

[Ser80] Serre, J. P., Trees, Springer (1980).

[Tit70] Tits, J., Sur le groupe des automorphismes d'un arbre, in Essays on topology and related topics, Springer (1970), 188--211.

[Tor20] Tornier, S., Groups acting on trees with prescribed local action, arxiv preprint: 2002.09876 (2020).

[Tut47] Tutte, W. T., A family of cubical graphs, in Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 43 (1947), 459--474.

[Tut59] Tutte, W. T., On the symmetry of cubic graphs, Canadian Journal of Mathematics, 11 (1959), 621--624.

[Wei78] Weiss, R., s-Transitive graphs, Algebraic methods in graph theory, Colloquia Mathematica Societatis J{\'a}nos Bolyai, 25 (1978), 827--847.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 Bib Ind

generated by GAPDoc2HTML