[BEW15] Banks, C., Elder, M. and Willis, G., Simple groups of automorphisms of trees determined by their actions on finite subtrees, Journal of Group Theory, 18 (2) (2015), 235--261.
[BM00] Burger, M. and Mozes, S., Groups acting on trees: from local to global structure, Publications Math{\'e}matiques de l'IH{\'E}S, Springer, 92 (1) (2000), 113--150.
[KM08] Kr{\"o}n, B. and M{\"o}ller, R., Analogues of Cayley graphs for topological groups, Mathematische Zeitschrift, Springer, 258 (3) (2008), 637.
[Ser80] Serre, J. P., Trees, Springer (1980).
[Tit70] Tits, J., Sur le groupe des automorphismes d'un arbre, in Essays on topology and related topics, Springer (1970), 188--211.
[Tor20] Tornier, S., Groups acting on trees with prescribed local action, arxiv preprint: 2002.09876 (2020).
[Tut47] Tutte, W. T., A family of cubical graphs, in Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 43 (1947), 459--474.
[Tut59] Tutte, W. T., On the symmetry of cubic graphs, Canadian Journal of Mathematics, 11 (1959), 621--624.
[Wei78] Weiss, R., s-Transitive graphs, Algebraic methods in graph theory, Colloquia Mathematica Societatis J{\'a}nos Bolyai, 25 (1978), 827--847.
generated by GAPDoc2HTML