SymbCompCC : a GAP 4 package - Index
A
B
C
E
F
G
I
L
O
P
S
Z
- AbelianInvariants, for p-power-poly-pcp-groups 5.2.3
- AbelianInvariantsMultiplier 5.2.1
- Background on (polycyclic) parametrised presentations 2.2
- COLLECT_PPOWERPOLY_PCP 3.6.1
- CollectPPPPcp 3.3.1
- Computation of low-dimensional cohomology 2.4
- Computation of Schur multiplicators 2.3
- Computing other invariants from Schur extensions 5.2
- Computing Schur extensions 5.1
- Example 2.5 3.1
- FirstCohomologyPPPPcps 5.2.5
- GAPInputPPPPcpGroups 3.4.6
- GAPInputPPPPcpGroupsAppend 3.4.7
- GeneratorsOfGroup 3.4.1
- GetPcGroupPPowerPoly 3.4.4
- GetPcpGroupPPowerPoly 3.4.5
- Global variables for the p-power-poly-pcp-groups 3.6
- Info classes for the computation of the Schur extension 5.3
- Info classes for the p-power-poly-pcp-groups 3.5
- InfoCollectingPPowerPoly 5.3.2
- InfoCollectingPPPPcp 3.5.2
- InfoConsistencyPPPPcp 3.5.1
- InfoConsistencyRelPPowerPoly 5.3.1
- Installing and Loading the SymbCompCC Package 1.0
- Installing the SymbCompCC Package 1.1
- Introduction 2.0
- IsConsistentPPPPcp 3.4.3
- LatexInputPPPPcpGroups 3.4.8
- LatexInputPPPPcpGroupsAllAppend 3.4.10
- LatexInputPPPPcpGroupsAppend 3.4.9
- Loading the SymbCompCC Package 1.2
- Obtaining p-power-poly-pcp-groups 3.2
- One 3.4.2
- Operations and functions for p-power-poly-pcp-group elements 3.3
- Operations and functions for p-power-poly-pcp-groups 3.4
- Overview 2.1
- p-power-poly-pcp-groups 3.0
- Parametrised Presentations 4.0
- ParPresGlobalVar_2_1 4.1.1
- ParPresGlobalVar_2_2 4.1.1
- ParPresGlobalVar_3_1 4.1.1
- ParPresGlobalVar_p_r_Names 4.1.2
- PPPPcpGroups 3.2.1
- PPPPcpGroupsElement 3.2.2
- Provided pp-presentations 4.1
- Schur extensions for p-power-poly-pcp-groups 5.0
- SchurExtParPres 5.1.2
- SchurMultiplicatorPPPPcps, for p-power-poly-pcp-groups 5.2.2
- SecondCohomologyPPPPcps 5.2.6
- ZeroCohomologyPPPPcps 5.2.4
[Up]
SymbCompCC manual
February 2022