SymbCompCC : a GAP 4 package - Index

A B C E F G I L O P S Z

A

AbelianInvariants, for p-power-poly-pcp-groups 5.2.3
AbelianInvariantsMultiplier 5.2.1

B

Background on (polycyclic) parametrised presentations 2.2

C

COLLECT_PPOWERPOLY_PCP 3.6.1
CollectPPPPcp 3.3.1
Computation of low-dimensional cohomology 2.4
Computation of Schur multiplicators 2.3
Computing other invariants from Schur extensions 5.2
Computing Schur extensions 5.1

E

Example 2.5 3.1

F

FirstCohomologyPPPPcps 5.2.5

G

GAPInputPPPPcpGroups 3.4.6
GAPInputPPPPcpGroupsAppend 3.4.7
GeneratorsOfGroup 3.4.1
GetPcGroupPPowerPoly 3.4.4
GetPcpGroupPPowerPoly 3.4.5
Global variables for the p-power-poly-pcp-groups 3.6

I

Info classes for the computation of the Schur extension 5.3
Info classes for the p-power-poly-pcp-groups 3.5
InfoCollectingPPowerPoly 5.3.2
InfoCollectingPPPPcp 3.5.2
InfoConsistencyPPPPcp 3.5.1
InfoConsistencyRelPPowerPoly 5.3.1
Installing and Loading the SymbCompCC Package 1.0
Installing the SymbCompCC Package 1.1
Introduction 2.0
IsConsistentPPPPcp 3.4.3

L

LatexInputPPPPcpGroups 3.4.8
LatexInputPPPPcpGroupsAllAppend 3.4.10
LatexInputPPPPcpGroupsAppend 3.4.9
Loading the SymbCompCC Package 1.2

O

Obtaining p-power-poly-pcp-groups 3.2
One 3.4.2
Operations and functions for p-power-poly-pcp-group elements 3.3
Operations and functions for p-power-poly-pcp-groups 3.4
Overview 2.1

P

p-power-poly-pcp-groups 3.0
Parametrised Presentations 4.0
ParPresGlobalVar_2_1 4.1.1
ParPresGlobalVar_2_2 4.1.1
ParPresGlobalVar_3_1 4.1.1
ParPresGlobalVar_p_r_Names 4.1.2
PPPPcpGroups 3.2.1
PPPPcpGroupsElement 3.2.2
Provided pp-presentations 4.1

S

Schur extensions for p-power-poly-pcp-groups 5.0
SchurExtParPres 5.1.2
SchurMultiplicatorPPPPcps, for p-power-poly-pcp-groups 5.2.2
SecondCohomologyPPPPcps 5.2.6

Z

ZeroCohomologyPPPPcps 5.2.4

[Up]

SymbCompCC manual
February 2022