SymbCompCC : a GAP 4 package - Index 
A
B
C
E
F
G
I
L
O
P
S
Z
- AbelianInvariants, for p-power-poly-pcp-groups 5.2.3 
- AbelianInvariantsMultiplier 5.2.1 
- Background on (polycyclic) parametrised presentations 2.2 
- COLLECT_PPOWERPOLY_PCP 3.6.1 
- CollectPPPPcp 3.3.1 
- Computation of low-dimensional cohomology 2.4 
- Computation of Schur multiplicators 2.3 
- Computing other invariants from Schur extensions 5.2 
- Computing Schur extensions 5.1 
- Example 2.5 3.1 
- FirstCohomologyPPPPcps 5.2.5 
- GAPInputPPPPcpGroups 3.4.6 
- GAPInputPPPPcpGroupsAppend 3.4.7 
- GeneratorsOfGroup 3.4.1 
- GetPcGroupPPowerPoly 3.4.4 
- GetPcpGroupPPowerPoly 3.4.5 
- Global variables for the p-power-poly-pcp-groups 3.6 
- Info classes for the computation of the Schur extension 5.3 
- Info classes for the p-power-poly-pcp-groups 3.5 
- InfoCollectingPPowerPoly 5.3.2 
- InfoCollectingPPPPcp 3.5.2 
- InfoConsistencyPPPPcp 3.5.1 
- InfoConsistencyRelPPowerPoly 5.3.1 
- Installing and Loading the SymbCompCC Package 1.0 
- Installing the SymbCompCC Package 1.1 
- Introduction 2.0 
- IsConsistentPPPPcp 3.4.3 
- LatexInputPPPPcpGroups 3.4.8 
- LatexInputPPPPcpGroupsAllAppend 3.4.10 
- LatexInputPPPPcpGroupsAppend 3.4.9 
- Loading the SymbCompCC Package 1.2 
- Obtaining p-power-poly-pcp-groups 3.2 
- One 3.4.2 
- Operations and functions for p-power-poly-pcp-group elements 3.3 
- Operations and functions for p-power-poly-pcp-groups 3.4 
- Overview 2.1 
- p-power-poly-pcp-groups 3.0 
- Parametrised Presentations 4.0 
- ParPresGlobalVar_2_1 4.1.1 
- ParPresGlobalVar_2_2 4.1.1 
- ParPresGlobalVar_3_1 4.1.1 
- ParPresGlobalVar_p_r_Names 4.1.2 
- PPPPcpGroups 3.2.1 
- PPPPcpGroupsElement 3.2.2 
- Provided pp-presentations 4.1 
- Schur extensions for p-power-poly-pcp-groups 5.0 
- SchurExtParPres 5.1.2 
- SchurMultiplicatorPPPPcps, for p-power-poly-pcp-groups 5.2.2 
- SecondCohomologyPPPPcps 5.2.6 
- ZeroCohomologyPPPPcps 5.2.4 
[Up]
SymbCompCC manual
February 2022