[MathJax on]
3 2d-mappings
3.1 Morphisms of 2-dimensional groups
This chapter describes morphisms of (pre-)crossed modules and (pre-)cat1-groups.
3.1-1 Source
‣ Source ( map ) | ( attribute ) |
‣ Range ( map ) | ( attribute ) |
‣ SourceHom ( map ) | ( attribute ) |
‣ RangeHom ( map ) | ( attribute ) |
Morphisms of 2-dimensional groups are implemented as 2-dimensional mappings. These have a pair of 2-dimensional groups as source and range, together with two group homomorphisms mapping between corresponding source and range groups. These functions return fail
when invalid data is supplied.
3.2 Morphisms of pre-crossed modules
3.2-1 IsXModMorphism
‣ IsXModMorphism ( map ) | ( property ) |
‣ IsPreXModMorphism ( map ) | ( property ) |
A morphism between two pre-crossed modules calX_1 = (∂_1 : S_1 -> R_1) and calX_2 = (∂_2 : S_2 -> R_2) is a pair (σ, ρ), where σ : S_1 -> S_2 and ρ : R_1 -> R_2 commute with the two boundary maps and are morphisms for the two actions:
\partial_2 \circ \sigma ~=~ \rho \circ \partial_1, \qquad
\sigma(s^r) ~=~ (\sigma s)^{\rho r}.
Here σ is the SourceHom
(3.1-1) and ρ is the RangeHom
(3.1-1) of the morphism. When calX_1 = calX_2 and σ, ρ are automorphisms then (σ, ρ) is an automorphism of calX_1. The group of automorphisms is denoted by Aut(calX_1 ).
3.2-2 IsInjective
‣ IsInjective ( map ) | ( method ) |
‣ IsSurjective ( map ) | ( method ) |
‣ IsSingleValued ( map ) | ( method ) |
‣ IsTotal ( map ) | ( method ) |
‣ IsBijective ( map ) | ( method ) |
‣ IsEndo2DimensionalMapping ( map ) | ( property ) |
The usual properties of mappings are easily checked. It is usually sufficient to verify that both the SourceHom
(3.1-1) and the RangeHom
(3.1-1) have the required property.
3.2-3 XModMorphism
‣ XModMorphism ( args ) | ( function ) |
‣ XModMorphismByGroupHomomorphisms ( X1, X2, sigma, rho ) | ( operation ) |
‣ PreXModMorphism ( args ) | ( function ) |
‣ PreXModMorphismByGroupHomomorphisms ( P1, P2, sigma, rho ) | ( operation ) |
‣ InclusionMorphism2DimensionalDomains ( X1, S1 ) | ( operation ) |
‣ InnerAutomorphismXMod ( X1, r ) | ( operation ) |
‣ IdentityMapping ( X1 ) | ( attribute ) |
These are the constructors for morphisms of pre-crossed and crossed modules.
In the following example we construct a simple automorphism of the crossed module X5
constructed in the previous chapter.
gap> sigma5 := GroupHomomorphismByImages( c5, c5, [ (5,6,7,8,9) ]
[ (5,9,8,7,6) ] );;
gap> rho5 := IdentityMapping( Range( X1 ) );
IdentityMapping( PAut(c5) )
gap> mor5 := XModMorphism( X5, X5, sigma5, rho5 );
[[c5->Aut(c5))] => [c5->Aut(c5))]]
gap> Display( mor5 );
Morphism of crossed modules :-
: Source = [c5->Aut(c5)] with generating sets:
[ (5,6,7,8,9) ]
[ GroupHomomorphismByImages( c5, c5, [ (5,6,7,8,9) ], [ (5,7,9,6,8) ] ) ]
: Range = Source
: Source Homomorphism maps source generators to:
[ (5,9,8,7,6) ]
: Range Homomorphism maps range generators to:
[ GroupHomomorphismByImages( c5, c5, [ (5,6,7,8,9) ], [ (5,7,9,6,8) ] ) ]
gap> IsAutomorphism2DimensionalDomain( mor5 );
true
gap> Order( mor5 );
2
gap> RepresentationsOfObject( mor5 );
[ "IsComponentObjectRep", "IsAttributeStoringRep", "Is2DimensionalMappingRep" ]
gap> KnownPropertiesOfObject( mor5 );
[ "CanEasilyCompareElements", "CanEasilySortElements", "IsTotal",
"IsSingleValued", "IsInjective", "IsSurjective", "RespectsMultiplication",
"IsPreXModMorphism", "IsXModMorphism", "IsEndomorphism2DimensionalDomain",
"IsAutomorphism2DimensionalDomain" ]
gap> KnownAttributesOfObject( mor5 );
[ "Name", "Order", "Range", "Source", "SourceHom", "RangeHom" ]
3.2-4 IsomorphismPerm2DimensionalGroup
‣ IsomorphismPerm2DimensionalGroup ( obj ) | ( attribute ) |
‣ IsomorphismPc2DimensionalGroup ( obj ) | ( attribute ) |
‣ IsomorphismByIsomorphisms ( D, list ) | ( operation ) |
When calD is a 2-dimensional domain with source S and range R and σ : S -> S',~ ρ : R -> R' are isomorphisms, then IsomorphismByIsomorphisms(D,[sigma,rho])
returns an isomorphism (σ,ρ) : calD -> calD' where calD' has source S' and range R'. Be sure to test IsBijective
for the two functions σ,ρ before applying this operation.
Using IsomorphismByIsomorphisms
with a pair of isomorphisms obtained using IsomorphismPermGroup
or IsomorphismPcGroup
, we may construct a crossed module or a cat1-group of permutation groups or pc-groups.
gap> q8 := SmallGroup(8,4);; ## quaternion group
gap> Xq8 := XModByAutomorphismGroup( q8 );
[Group( [ f1, f2, f3 ] )->Group( [ Pcgs([ f1, f2, f3 ]) -> [ f1*f2, f2, f3 ],
Pcgs([ f1, f2, f3 ]) -> [ f2, f1*f2, f3 ],
Pcgs([ f1, f2, f3 ]) -> [ f1*f3, f2, f3 ],
Pcgs([ f1, f2, f3 ]) -> [ f1, f2*f3, f3 ] ] )]
gap> iso := IsomorphismPerm2DimensionalGroup( Xq8 );;
gap> Yq8 := Image( iso );
[Group( [ (1,2,4,6)(3,8,7,5), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8)
] )->Group( [ (1,3,4,6), (1,2,3)(4,5,6), (1,4)(3,6), (2,5)(3,6) ] )]
gap> s4 := SymmetricGroup(4);;
gap> isos4 := IsomorphismGroups( Range(Yq8), s4 );;
gap> id := IdentityMapping( Source( Yq8 ) );;
gap> IsBijective( id );; IsBijective( isos4 );;
gap> mor := IsomorphismByIsomorphisms( Yq8, [id,isos4] );;
gap> Zq8 := Image( mor );
[Group( [ (1,2,4,6)(3,8,7,5), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8)
] )->SymmetricGroup( [ 1 .. 4 ] )]
3.2-5 MorphismOfPullback
‣ MorphismOfPullback ( xmod ) | ( attribute ) |
Let calX_1 = (λ : L -> N) be the pullback crossed module obtained from a crossed module calX_0 = (μ : M -> P) and a group homomorphism ν : N -> P. Then the associated crossed module morphism is (κ,ν) : calX_1 -> calX_0 where κ is the projection from L to M.
3.3 Morphisms of pre-cat1-groups
A morphism of pre-cat1-groups from calC_1 = (e_1;t_1,h_1 : G_1 -> R_1) to calC_2 = (e_2;t_2,h_2 : G_2 -> R_2) is a pair (γ, ρ) where γ : G_1 -> G_2 and ρ : R_1 -> R_2 are homomorphisms satisfying
h_2 \circ \gamma ~=~ \rho \circ h_1, \qquad
t_2 \circ \gamma ~=~ \rho \circ t_1, \qquad
e_2 \circ \rho ~=~ \gamma \circ e_1.
3.3-1 IsCat1GroupMorphism
‣ IsCat1GroupMorphism ( map ) | ( property ) |
‣ IsPreCat1GroupMorphism ( map ) | ( property ) |
‣ Cat1GroupMorphism ( args ) | ( function ) |
‣ Cat1GroupMorphismByGroupHomomorphisms ( C1, C2, gamma, rho ) | ( operation ) |
‣ PreCat1GroupMorphism ( args ) | ( function ) |
‣ PreCat1GroupMorphismByGroupHomomorphisms ( P1, P2, gamma, rho ) | ( operation ) |
‣ InclusionMorphism2DimensionalDomains ( C1, S1 ) | ( operation ) |
‣ InnerAutomorphismCat1 ( C1, r ) | ( operation ) |
‣ IdentityMapping ( C1 ) | ( attribute ) |
For an example we form a second cat1-group C2=[g18=>s3a]
, similar to C1
in 2.4-1, then construct an isomorphism (γ,ρ) between them.
gap> t3 := GroupHomomorphismByImages(g18,s3a,g18gens,[(),(7,8,9),(8,9)]);;
gap> e3 := GroupHomomorphismByImages(s3a,g18,s3agens,[(4,5,6),(2,3)(5,6)]);;
gap> C3 := Cat1Group( t3, h1, e3 );;
gap> imgamma := [ (4,5,6), (1,2,3), (2,3)(5,6) ];;
gap> gamma := GroupHomomorphismByImages( g18, g18, g18gens, imgamma );;
gap> rho := IdentityMapping( s3a );;
gap> phi3 := Cat1GroupMorphism( C18, C3, gamma, rho );;
gap> Display( phi3 );;
Morphism of cat1-groups :-
: Source = [g18=>s3a] with generating sets:
[ (1,2,3), (4,5,6), (2,3)(5,6) ]
[ (7,8,9), (8,9) ]
: Range = [g18=>s3a] with generating sets:
[ (1,2,3), (4,5,6), (2,3)(5,6) ]
[ (7,8,9), (8,9) ]
: Source Homomorphism maps source generators to:
[ (4,5,6), (1,2,3), (2,3)(5,6) ]
: Range Homomorphism maps range generators to:
[ (7,8,9), (8,9) ]
3.3-2 Cat1GroupMorphismOfXModMorphism
‣ Cat1GroupMorphismOfXModMorphism ( IsXModMorphism ) | ( attribute ) |
‣ XModMorphismOfCat1GroupMorphism ( IsCat1GroupMorphism ) | ( attribute ) |
If (σ,ρ) : calX_1 -> calX_2 and calC_1,calC_2 are the cat^1-groups accociated to calX_1, calX_2, then the associated morphism of cat^1-groups is (γ,ρ) where γ(r_1,s_1) = (ρ r_1, σ s_1).
Similarly, given a morphism (γ,ρ) : calC_1 -> calC_2 of cat1-groups, the associated morphism of crossed modules is (σ,ρ) : calX_1 -> calX_2 where σ s_1 = γ(1,s_1). .
gap> phi5 := Cat1GroupMorphismOfXModMorphism( mor5 );
[[(Aut(c5) |X c5)=>Aut(c5)] => [(Aut(c5) |X c5)=>Aut(c5)]]
gap> mor3 := XModMorphismOfCat1GroupMorphism( phi3 );;
gap> Display( mor3 );
Morphism of crossed modules :-
: Source = xmod([g18=>s3a]) with generating sets:
[ (4,5,6) ]
[ (7,8,9), (8,9) ]
: Range = xmod([g18=>s3a]) with generating sets:
[ (1,2,3) ]
[ (7,8,9), (8,9) ]
: Source Homomorphism maps source generators to:
[ (1,2,3) ]
: Range Homomorphism maps range generators to:
[ (7,8,9), (8,9) ]
3.3-3 IsomorphismPermObject
‣ IsomorphismPermObject ( obj ) | ( function ) |
‣ IsomorphismPerm2DimensionalGroup ( 2DimensionalGroup ) | ( attribute ) |
‣ IsomorphismFp2DimensionalGroup ( 2DimensionalGroup ) | ( attribute ) |
‣ IsomorphismPc2DimensionalGroup ( 2DimensionalGroup ) | ( attribute ) |
The global function IsomorphismPermObject
calls IsomorphismPerm2DimensionalGroup
, which constructs a morphism whose SourceHom
(3.1-1) and RangeHom
(3.1-1) are calculated using IsomorphismPermGroup
on the source and range.
gap> iso8 := IsomorphismPerm2DimensionalGroup( C8 );
[[G8=>d12] => [..]]
3.3-4 SmallerDegreePermutationRepresentation2DimensionalGroup
‣ SmallerDegreePermutationRepresentation2DimensionalGroup ( Perm2DimensionalGroup ) | ( attribute ) |
The attribute SmallerDegreePermutationRepresentation2DimensionalGroup
is obtained by calling SmallerDegreePermutationRepresentation
on the source and range to obtain the an isomorphism for the pre-xmod or pre-cat^1-group.
gap> G := Group( (1,2,3,4)(5,6,7,8) );;
gap> H := Subgroup( G, [ (1,3)(2,4)(5,7)(6,8) ] );;
gap> XG := XModByNormalSubgroup( G, H );
[Group( [ (1,3)(2,4)(5,7)(6,8) ] )->Group( [ (1,2,3,4)(5,6,7,8) ] )]
gap> sdpr := SmallerDegreePermutationRepresentation2DimensionalGroup( XG );;
gap> Range( sdpr );
[Group( [ (1,2) ] )->Group( [ (1,2,3,4) ] )]
3.4 Operations on morphisms
3.4-1 CompositionMorphism
‣ CompositionMorphism ( map2, map1 ) | ( operation ) |
Composition of morphisms (written (<map1> * <map2>)
when maps act on the right) calls the CompositionMorphism
function for maps (acting on the left), applied to the appropriate type of 2d-mapping.
gap> H8 := Subgroup(G8,[G8.3,G8.4,G8.6,G8.7]); SetName( H8, "H8" );
Group([ f3, f4, f6, f7 ])
gap> c6 := Subgroup( d12, [b,c] ); SetName( c6, "c6" );
Group([ f2, f3 ])
gap> SC8 := Sub2DimensionalGroup( C8, H8, c6 );
[H8=>c6]
gap> IsCat1Group( SC8 );
true
gap> inc8 := InclusionMorphism2DimensionalDomains( C8, SC8 );
[[H8=>c6] => [G8=>d12]]
gap> CompositionMorphism( iso8, inc );
[[H8=>c6] => P[G8=>d12]]
3.4-2 Kernel
‣ Kernel ( map ) | ( operation ) |
‣ Kernel2DimensionalMapping ( map ) | ( attribute ) |
The kernel of a morphism of crossed modules is a normal subcrossed module whose groups are the kernels of the source and target homomorphisms. The inclusion of the kernel is a standard example of a crossed square, but these have not yet been implemented.
gap> c2 := Group( (19,20) );
Group([ (19,20) ])
gap> X0 := XModByNormalSubgroup( c2, c2 ); SetName( X0, "X0" );
[Group( [ (19,20) ] )->Group( [ (19,20) ] )]
gap> SX8 := Source( X8 );;
gap> genSX8 := GeneratorsOfGroup( SX8 );
[ f1, f4, f5, f7 ]
gap> sigma0 := GroupHomomorphismByImages(SX8,c2,genSX8,[(19,20),(),(),()]);
[ f1, f4, f5, f7 ] -> [ (19,20), (), (), () ]
gap> rho0 := GroupHomomorphismByImages(d12,c2,[a1,a2,a3],[(19,20),(),()]);
[ f1, f2, f3 ] -> [ (19,20), (), () ]
gap> mor0 := XModMorphism( X8, X0, sigma0, rho0 );;
gap> K0 := Kernel( mor0 );;
gap> StructureDescription( K0 );
[ "C12", "C6" ]