‣ PrimitiveCentralIdempotentsByCharacterTable ( FG ) | ( operation ) |
Returns: A list of group algebra elements.
The input FG should be a semisimple group algebra.
Returns the list of primitive central idempotents of FG using the character table of G (9.4).
gap> QS3 := GroupRing( Rationals, SymmetricGroup(3) );; gap> PrimitiveCentralIdempotentsByCharacterTable( QS3 ); [ (1/6)*()+(-1/6)*(2,3)+(-1/6)*(1,2)+(1/6)*(1,2,3)+(1/6)*(1,3,2)+(-1/6)*(1,3), (2/3)*()+(-1/3)*(1,2,3)+(-1/3)*(1,3,2), (1/6)*()+(1/6)*(2,3)+(1/6)*(1,2)+(1/ 6)*(1,2,3)+(1/6)*(1,3,2)+(1/6)*(1,3) ] gap> QG:=GroupRing( Rationals , SmallGroup(24,3) ); <algebra-with-one over Rationals, with 4 generators> gap> FG:=GroupRing( CF(3) , SmallGroup(24,3) ); <algebra-with-one over CF(3), with 4 generators> gap> pciQG := PrimitiveCentralIdempotentsByCharacterTable(QG);; gap> pciFG := PrimitiveCentralIdempotentsByCharacterTable(FG);; gap> Length(pciQG); 5 gap> Length(pciFG); 7
‣ IsCompleteSetOfOrthogonalIdempotents ( R, list ) | ( operation ) |
The input should be formed by a unital ring R and a list list of elements of R.
Returns true
if the list list is a complete list of orthogonal idempotents of R. That is, the output is true
provided the following conditions are satisfied:
⋅ The sum of the elements of list is the identity of R,
⋅ e^2=e, for every e in list and
⋅ e*f=0, if e and f are elements in different positions of list.
No claim is made on the idempotents being central or primitive.
Note that the if a non-zero element t of R appears in two different positions of list then the output is false
, and that the list list must not contain zeroes.
gap> QS5 := GroupRing( Rationals, SymmetricGroup(5) );; gap> idemp := PrimitiveCentralIdempotentsByCharacterTable( QS5 );; gap> IsCompleteSetOfOrthogonalIdempotents( QS5, idemp ); true gap> IsCompleteSetOfOrthogonalIdempotents( QS5, [ One( QS5 ) ] ); true gap> IsCompleteSetOfOrthogonalIdempotents( QS5, [ One( QS5 ), One( QS5 ) ] ); false
‣ PrimitiveCentralIdempotentsByESSP ( QG ) | ( attribute ) |
Returns: A list of group algebra elements.
The input QG should be a semisimple rational group algebra of a finite group G.
The output is the list of primitive central idempotents of the group algebra QG realizable by extremely strong Shoda pairs (9.16) of G.
If the list of primitive central idempotents given by the output is not complete (i.e. if the group G is not normally monomial (9.18)) then a warning is displayed.
gap> QG:=GroupRing( Rationals, DihedralGroup(16) );; gap> PrimitiveCentralIdempotentsByESSP( QG ); [ (1/16)*<identity> of ...+(1/16)*f1+(1/16)*f2+(1/16)*f3+(1/16)*f4+(1/ 16)*f1*f2+(1/16)*f1*f3+(1/16)*f1*f4+(1/16)*f2*f3+(1/16)*f2*f4+(1/ 16)*f3*f4+(1/16)*f1*f2*f3+(1/16)*f1*f2*f4+(1/16)*f1*f3*f4+(1/ 16)*f2*f3*f4+(1/16)*f1*f2*f3*f4, (1/16)*<identity> of ...+(-1/16)*f1+(-1/ 16)*f2+(1/16)*f3+(1/16)*f4+(1/16)*f1*f2+(-1/16)*f1*f3+(-1/16)*f1*f4+(-1/ 16)*f2*f3+(-1/16)*f2*f4+(1/16)*f3*f4+(1/16)*f1*f2*f3+(1/16)*f1*f2*f4+(-1/ 16)*f1*f3*f4+(-1/16)*f2*f3*f4+(1/16)*f1*f2*f3*f4, (1/16)*<identity> of ...+(-1/16)*f1+(1/16)*f2+(1/16)*f3+(1/16)*f4+(-1/ 16)*f1*f2+(-1/16)*f1*f3+(-1/16)*f1*f4+(1/16)*f2*f3+(1/16)*f2*f4+(1/ 16)*f3*f4+(-1/16)*f1*f2*f3+(-1/16)*f1*f2*f4+(-1/16)*f1*f3*f4+(1/ 16)*f2*f3*f4+(-1/16)*f1*f2*f3*f4, (1/16)*<identity> of ...+(1/16)*f1+(-1/ 16)*f2+(1/16)*f3+(1/16)*f4+(-1/16)*f1*f2+(1/16)*f1*f3+(1/16)*f1*f4+(-1/ 16)*f2*f3+(-1/16)*f2*f4+(1/16)*f3*f4+(-1/16)*f1*f2*f3+(-1/16)*f1*f2*f4+(1/ 16)*f1*f3*f4+(-1/16)*f2*f3*f4+(-1/16)*f1*f2*f3*f4, (1/4)*<identity> of ...+(-1/4)*f3+(1/4)*f4+(-1/4)*f3*f4, (1/2)*<identity> of ...+(-1/2)*f4 ] gap> QG := GroupRing( Rationals, SmallGroup(24,12) );; gap> PrimitiveCentralIdempotentsByESSP( QG ); Wedderga: Warning!!! The output is a NON-COMPLETE list of prim. central idemp.s of the input! [ (1/24)*<identity> of ...+(1/24)*f1+(1/24)*f2+(1/24)*f3+(1/24)*f4+(1/ 24)*f1*f2+(1/24)*f1*f3+(1/24)*f1*f4+(1/24)*f2^2+(1/24)*f2*f3+(1/ 24)*f2*f4+(1/24)*f3*f4+(1/24)*f1*f2^2+(1/24)*f1*f2*f3+(1/24)*f1*f2*f4+(1/ 24)*f1*f3*f4+(1/24)*f2^2*f3+(1/24)*f2^2*f4+(1/24)*f2*f3*f4+(1/24)*f1*f2^ 2*f3+(1/24)*f1*f2^2*f4+(1/24)*f1*f2*f3*f4+(1/24)*f2^2*f3*f4+(1/24)*f1*f2^ 2*f3*f4, (1/24)*<identity> of ...+(-1/24)*f1+(1/24)*f2+(1/24)*f3+(1/ 24)*f4+(-1/24)*f1*f2+(-1/24)*f1*f3+(-1/24)*f1*f4+(1/24)*f2^2+(1/ 24)*f2*f3+(1/24)*f2*f4+(1/24)*f3*f4+(-1/24)*f1*f2^2+(-1/24)*f1*f2*f3+(-1/ 24)*f1*f2*f4+(-1/24)*f1*f3*f4+(1/24)*f2^2*f3+(1/24)*f2^2*f4+(1/ 24)*f2*f3*f4+(-1/24)*f1*f2^2*f3+(-1/24)*f1*f2^2*f4+(-1/24)*f1*f2*f3*f4+(1/ 24)*f2^2*f3*f4+(-1/24)*f1*f2^2*f3*f4, (1/6)*<identity> of ...+(-1/12)*f2+( 1/6)*f3+(1/6)*f4+(-1/12)*f2^2+(-1/12)*f2*f3+(-1/12)*f2*f4+(1/6)*f3*f4+(-1/ 12)*f2^2*f3+(-1/12)*f2^2*f4+(-1/12)*f2*f3*f4+(-1/12)*f2^2*f3*f4 ]
‣ PrimitiveCentralIdempotentsByStrongSP ( FG ) | ( attribute ) |
Returns: A list of group algebra elements.
The input FG should be a semisimple group algebra of a finite group G whose coefficient field F is either a finite field or the field ℚ of rationals.
If F = ℚ then the output is the list of primitive central idempotents of the group algebra FG realizable by strong Shoda pairs (9.15) of G.
If F is a finite field then the output is the list of primitive central idempotents of FG realizable by strong Shoda pairs (K,H) of G and q-cyclotomic classes modulo the index of H in K (9.19).
If the list of primitive central idempotents given by the output is not complete (i.e. if the group G is not strongly monomial (9.17)) then a warning is displayed.
gap> QG:=GroupRing( Rationals, AlternatingGroup(4) );; gap> PrimitiveCentralIdempotentsByStrongSP( QG ); [ (1/12)*()+(1/12)*(2,3,4)+(1/12)*(2,4,3)+(1/12)*(1,2)(3,4)+(1/12)*(1,2,3)+(1/ 12)*(1,2,4)+(1/12)*(1,3,2)+(1/12)*(1,3,4)+(1/12)*(1,3)(2,4)+(1/12)* (1,4,2)+(1/12)*(1,4,3)+(1/12)*(1,4)(2,3), (1/6)*()+(-1/12)*(2,3,4)+(-1/12)*(2,4,3)+(1/6)*(1,2)(3,4)+(-1/12)*(1,2,3)+( -1/12)*(1,2,4)+(-1/12)*(1,3,2)+(-1/12)*(1,3,4)+(1/6)*(1,3)(2,4)+(-1/12)* (1,4,2)+(-1/12)*(1,4,3)+(1/6)*(1,4)(2,3), (3/4)*()+(-1/4)*(1,2)(3,4)+(-1/4)*(1,3)(2,4)+(-1/4)*(1,4)(2,3) ] gap> QG := GroupRing( Rationals, SmallGroup(24,3) );; gap> PrimitiveCentralIdempotentsByStrongSP( QG );; Wedderga: Warning!!! The output is a NON-COMPLETE list of prim. central idemp.s of the input! gap> FG := GroupRing( GF(2), Group((1,2,3)) );; gap> PrimitiveCentralIdempotentsByStrongSP( FG ); [ (Z(2)^0)*()+(Z(2)^0)*(1,2,3)+(Z(2)^0)*(1,3,2), (Z(2)^0)*(1,2,3)+(Z(2)^0)*(1,3,2) ] gap> FG := GroupRing( GF(5), SmallGroup(24,3) );; gap> PrimitiveCentralIdempotentsByStrongSP( FG );; Wedderga: Warning!!! The output is a NON-COMPLETE list of prim. central idemp.s of the input!
‣ PrimitiveCentralIdempotentsBySP ( QG ) | ( function ) |
Returns: A list of group algebra elements.
The input should be a rational group algebra of a finite group G.
Returns a list containing all the primitive central idempotents e of the rational group algebra QG such that χ(e)ne 0 for some irreducible monomial character χ of G.
The output is the list of all primitive central idempotents of QG if and only if G is monomial, otherwise a warning message is displayed.
gap> QG := GroupRing( Rationals, SymmetricGroup(4) ); <algebra-with-one over Rationals, with 2 generators> gap> pci:=PrimitiveCentralIdempotentsBySP( QG ); [ (1/24)*()+(1/24)*(3,4)+(1/24)*(2,3)+(1/24)*(2,3,4)+(1/24)*(2,4,3)+(1/24)* (2,4)+(1/24)*(1,2)+(1/24)*(1,2)(3,4)+(1/24)*(1,2,3)+(1/24)*(1,2,3,4)+(1/ 24)*(1,2,4,3)+(1/24)*(1,2,4)+(1/24)*(1,3,2)+(1/24)*(1,3,4,2)+(1/24)* (1,3)+(1/24)*(1,3,4)+(1/24)*(1,3)(2,4)+(1/24)*(1,3,2,4)+(1/24)*(1,4,3,2)+( 1/24)*(1,4,2)+(1/24)*(1,4,3)+(1/24)*(1,4)+(1/24)*(1,4,2,3)+(1/24)*(1,4) (2,3), (1/24)*()+(-1/24)*(3,4)+(-1/24)*(2,3)+(1/24)*(2,3,4)+(1/24)* (2,4,3)+(-1/24)*(2,4)+(-1/24)*(1,2)+(1/24)*(1,2)(3,4)+(1/24)*(1,2,3)+(-1/ 24)*(1,2,3,4)+(-1/24)*(1,2,4,3)+(1/24)*(1,2,4)+(1/24)*(1,3,2)+(-1/24)* (1,3,4,2)+(-1/24)*(1,3)+(1/24)*(1,3,4)+(1/24)*(1,3)(2,4)+(-1/24)* (1,3,2,4)+(-1/24)*(1,4,3,2)+(1/24)*(1,4,2)+(1/24)*(1,4,3)+(-1/24)*(1,4)+( -1/24)*(1,4,2,3)+(1/24)*(1,4)(2,3), (3/8)*()+(-1/8)*(3,4)+(-1/8)*(2,3)+( -1/8)*(2,4)+(-1/8)*(1,2)+(-1/8)*(1,2)(3,4)+(1/8)*(1,2,3,4)+(1/8)* (1,2,4,3)+(1/8)*(1,3,4,2)+(-1/8)*(1,3)+(-1/8)*(1,3)(2,4)+(1/8)*(1,3,2,4)+( 1/8)*(1,4,3,2)+(-1/8)*(1,4)+(1/8)*(1,4,2,3)+(-1/8)*(1,4)(2,3), (3/8)*()+(1/8)*(3,4)+(1/8)*(2,3)+(1/8)*(2,4)+(1/8)*(1,2)+(-1/8)*(1,2)(3,4)+( -1/8)*(1,2,3,4)+(-1/8)*(1,2,4,3)+(-1/8)*(1,3,4,2)+(1/8)*(1,3)+(-1/8)*(1,3) (2,4)+(-1/8)*(1,3,2,4)+(-1/8)*(1,4,3,2)+(1/8)*(1,4)+(-1/8)*(1,4,2,3)+(-1/ 8)*(1,4)(2,3), (1/6)*()+(-1/12)*(2,3,4)+(-1/12)*(2,4,3)+(1/6)*(1,2)(3,4)+( -1/12)*(1,2,3)+(-1/12)*(1,2,4)+(-1/12)*(1,3,2)+(-1/12)*(1,3,4)+(1/6)*(1,3) (2,4)+(-1/12)*(1,4,2)+(-1/12)*(1,4,3)+(1/6)*(1,4)(2,3) ] gap> IsCompleteSetOfPCIs(QG,pci); true gap> QS5 := GroupRing( Rationals, SymmetricGroup(5) );; gap> pci:=PrimitiveCentralIdempotentsBySP( QS5 );; Wedderga: Warning!! The output is a NON-COMPLETE list of prim. central idemp.s of the input! gap> IsCompleteSetOfPCIs( QS5 , pci ); false
The output of PrimitiveCentralIdempotentsBySP
contains the output of PrimitiveCentralIdempotentsByStrongSP
(4.3-2), possibly properly.
gap> QG := GroupRing( Rationals, SmallGroup(48,28) );; gap> pci:=PrimitiveCentralIdempotentsBySP( QG );; Wedderga: Warning!! The output is a NON-COMPLETE list of prim. central idemp.s of the input! gap> Length(pci); 6 gap> spci:=PrimitiveCentralIdempotentsByStrongSP( QG );; Wedderga: Warning!!! The output is a NON-COMPLETE list of prim. central idemp.s of the input! gap> Length(spci); 5 gap> IsSubset(pci,spci); true gap> QG:=GroupRing(Rationals,SmallGroup(1000,86)); <algebra-with-one over Rationals, with 6 generators> gap> IsCompleteSetOfPCIs( QG , PrimitiveCentralIdempotentsBySP(QG) ); true gap> IsCompleteSetOfPCIs( QG , PrimitiveCentralIdempotentsByStrongSP(QG) ); Wedderga: Warning!!! The output is a NON-COMPLETE list of prim. central idemp.s of the input! false
‣ PrimitiveIdempotentsNilpotent ( FG, H, K, C, args ) | ( operation ) |
Returns: A list of orthogonal primitive idempotents.
The input FG should be a semisimple group algebra of a finite nilpotent group G whose coefficient field F is a finite field. H and K should form a strong Shoda pair (H,K) of G. args is a list containing an epimorphism map epi from N_G(K) to N_G(K)/K and a generator gq of H/K. C is the |F|-cyclotomic class modulo [H:K] (w.r.t. the generator gq of H/K)
The output is a complete set of orthogonal primitive idempotents of the simple algebra FGe_C(G,H,K) (9.22).
gap> G:=DihedralGroup(8);; gap> F:=GF(3);; gap> FG:=GroupRing(F,G);; gap> H:=StrongShodaPairs(G)[5][1]; Group([ f1*f2*f3, f3 ]) gap> K:=StrongShodaPairs(G)[5][2]; Group([ f1*f2 ]) gap> N:=Normalizer(G,K); Group([ f1*f2*f3, f3 ]) gap> epi:=NaturalHomomorphismByNormalSubgroup(N,K); [ f1*f2*f3, f3 ] -> [ f1, f1 ] gap> QHK:=Image(epi,H); Group([ f1, f1 ]) gap> gq:=MinimalGeneratingSet(QHK)[1]; f1 gap> C:=CyclotomicClasses(Size(F),Index(H,K))[2]; [ 1 ] gap> PrimitiveIdempotentsNilpotent(FG,H,K,C,[epi,gq]); [ (Z(3)^0)*<identity> of ...+(Z(3))*f3+(Z(3)^0)*f1*f2+(Z(3))*f1*f2*f3, (Z(3)^0)*<identity> of ...+(Z(3))*f3+(Z(3))*f1*f2+(Z(3)^0)*f1*f2*f3 ]
‣ PrimitiveIdempotentsTrivialTwisting ( FG, H, K, C, args ) | ( operation ) |
Returns: A list of orthogonal primitive idempotents.
The input FG should be a semisimple group algebra of a finite group G whose coefficient field F is a finite field. H and K should form a strong Shoda pair (H,K) of G. args is a list containing an epimorphism map epi from N_G(K) to N_G(K)/K and a generator gq of H/K. C is the |F|-cyclotomic class modulo [H:K] (w.r.t. the generator gq of H/K). The input parameters should be such that the simple component FGe_C(G,H,K) has a trivial twisting.
The output is a complete set of orthogonal primitive idempotents of the simple algebra FGe_C(G,H,K) (9.22).
gap> G:=DihedralGroup(8);; gap> F:=GF(3);; gap> FG:=GroupRing(F,G);; gap> H:=StrongShodaPairs(G)[5][1]; Group([ f1*f2*f3, f3 ]) gap> K:=StrongShodaPairs(G)[5][2]; Group([ f1*f2 ]) gap> N:=Normalizer(G,K); Group([ f1*f2*f3, f3 ]) gap> epi:=NaturalHomomorphismByNormalSubgroup(N,K); [ f1*f2*f3, f3 ] -> [ f1, f1 ] gap> QHK:=Image(epi,H); Group([ f1, f1 ]) gap> gq:=MinimalGeneratingSet(QHK)[1]; f1 gap> C:=CyclotomicClasses(Size(F),Index(H,K))[2]; [ 1 ] gap> PrimitiveIdempotentsTrivialTwisting(FG,H,K,C,[epi,gq]); [ (Z(3)^0)*<identity> of ...+(Z(3))*f3+(Z(3)^0)*f1*f2+(Z(3))*f1*f2*f3, (Z(3)^0)*<identity> of ...+(Z(3))*f3+(Z(3))*f1*f2+(Z(3)^0)*f1*f2*f3 ]
generated by GAPDoc2HTML