unipot : a GAP 4 package - Index

_ C E G I L M N O P R S T U V

_

\* 2.3
\< 2.3
\= 2.3

C

CanonicalForm 2.3.8
CentralElement 2.2.10
Citing Unipot 1.2
Comm, for `UnipotChevElem' 2.3.19
Conjugation, of UnipotChevElem 2.3.18

E

Elements of unipotent subgroups of Chevalley groups 2.3
Equality, for UnipotChevElem 2.3.11

G

General functionality 2.1
GeneratorsOfGroup, for `UnipotChevSubGr' 2.2.8

I

Inverse, for `UnipotChevElem' 2.3.15
InverseOp, for `UnipotChevElem' 2.3.15
IsCentral 2.3.21
IsOne 2.3.16
IsRootElement 2.3.20
IsUnipotChevElem 2.3.1
IsUnipotChevRepByFundamentalCoeffs 2.3.2
IsUnipotChevRepByRootNumbers 2.3.2
IsUnipotChevRepByRoots 2.3.2
IsUnipotChevSubGr 2.2.1

L

Less than, for UnipotChevElem 2.3.12

M

Multiplication, for UnipotChevElem 2.3.13

N

NegativeRootsFC 2.2.7

O

One, for `UnipotChevSubGr' 2.2.4
OneOp, for `UnipotChevElem' 2.3.14
OneOp, for `UnipotChevSubGr' 2.2.4

P

PositiveRootsFC 2.2.7
Powers, of UnipotChevElem 2.3.17
Preface 1.0
PrintObj, for `UnipotChevElem' 2.3.9
PrintObj, for `UnipotChevSubGr' 2.2.3

R

Representative 2.2.9
Root Systems 1.1
RootSystem, for `UnipotChevSubGr' 2.2.6

S

ShallowCopy, for `UnipotChevElem' 2.3.10
Size, for `UnipotChevSubGr' 2.2.5
Symbolic computation 2.4

T

The GAP Package Unipot 2.0

U

Unipot 1.0
UNIPOT_DEFAULT_REP 2.3.3
UnipotChevElemByFC 2.3.5
UnipotChevElemByFundamentalCoeffs 2.3.5
UnipotChevElemByFundamentalCoeffs, element conversion 2.3.7
UnipotChevElemByR 2.3.6
UnipotChevElemByRN 2.3.4
UnipotChevElemByRootNumbers 2.3.4
UnipotChevElemByRootNumbers, element conversion 2.3.7
UnipotChevElemByRoots 2.3.6
UnipotChevElemByRoots, element conversion 2.3.7
UnipotChevInfo 2.1.1
UnipotChevSubGr 2.2.2
Unipotent subgroups of Chevalley groups 2.2

V

ViewObj, for `UnipotChevElem' 2.3.9
ViewObj, for `UnipotChevSubGr' 2.2.3

[Up]

unipot manual
July 2024