unipot : a GAP 4 package - Index
_
C
E
G
I
L
M
N
O
P
R
S
T
U
V
- \* 2.3
- \< 2.3
- \= 2.3
- CanonicalForm 2.3.8
- CentralElement 2.2.10
- Citing Unipot 1.2
- Comm, for `UnipotChevElem' 2.3.19
- Conjugation, of UnipotChevElem 2.3.18
- Elements of unipotent subgroups of Chevalley groups 2.3
- Equality, for UnipotChevElem 2.3.11
- General functionality 2.1
- GeneratorsOfGroup, for `UnipotChevSubGr' 2.2.8
- Inverse, for `UnipotChevElem' 2.3.15
- InverseOp, for `UnipotChevElem' 2.3.15
- IsCentral 2.3.21
- IsOne 2.3.16
- IsRootElement 2.3.20
- IsUnipotChevElem 2.3.1
- IsUnipotChevRepByFundamentalCoeffs 2.3.2
- IsUnipotChevRepByRootNumbers 2.3.2
- IsUnipotChevRepByRoots 2.3.2
- IsUnipotChevSubGr 2.2.1
- Less than, for UnipotChevElem 2.3.12
- Multiplication, for UnipotChevElem 2.3.13
- NegativeRootsFC 2.2.7
- One, for `UnipotChevSubGr' 2.2.4
- OneOp, for `UnipotChevElem' 2.3.14
- OneOp, for `UnipotChevSubGr' 2.2.4
- PositiveRootsFC 2.2.7
- Powers, of UnipotChevElem 2.3.17
- Preface 1.0
- PrintObj, for `UnipotChevElem' 2.3.9
- PrintObj, for `UnipotChevSubGr' 2.2.3
- Representative 2.2.9
- Root Systems 1.1
- RootSystem, for `UnipotChevSubGr' 2.2.6
- ShallowCopy, for `UnipotChevElem' 2.3.10
- Size, for `UnipotChevSubGr' 2.2.5
- Symbolic computation 2.4
- The GAP Package Unipot 2.0
- Unipot 1.0
- UNIPOT_DEFAULT_REP 2.3.3
- UnipotChevElemByFC 2.3.5
- UnipotChevElemByFundamentalCoeffs 2.3.5
- UnipotChevElemByFundamentalCoeffs, element conversion 2.3.7
- UnipotChevElemByR 2.3.6
- UnipotChevElemByRN 2.3.4
- UnipotChevElemByRootNumbers 2.3.4
- UnipotChevElemByRootNumbers, element conversion 2.3.7
- UnipotChevElemByRoots 2.3.6
- UnipotChevElemByRoots, element conversion 2.3.7
- UnipotChevInfo 2.1.1
- UnipotChevSubGr 2.2.2
- Unipotent subgroups of Chevalley groups 2.2
- ViewObj, for `UnipotChevElem' 2.3.9
- ViewObj, for `UnipotChevSubGr' 2.2.3
[Up]
unipot manual
July 2024