SONATA : a GAP 4 package - Index
_
A
B
C
D
E
F
G
I
L
M
N
O
P
Q
R
S
T
U
W
Z
- / 6.14.2
- = 6.10.1
- Accessing nearring elements 2.6
- Accessing the information about a nearring stored in the library 3.4
- ActionOfNearRingOnNGroup 8.3.3
- AllExceptionalNearFields 10.3.2
- AllLibraryNearRings 3.1.3
- AllLibraryNearRingsWithOne 3.1.6
- Arbitrary functions on groups: EndoMappings 4.0
- AsEndoMapping 4.1.3
- AsExplicitMultiplicationNearRing 5.4.2
- AsGroupGeneralMappingByImages 4.1.4
- AsGroupReductElement 2.6.2
- AsList, near ring ideals 6.5.1
- AsList, near rings 2.7.1
- AsNearRingElement 2.6.1
- AsPermGroup 1.12.1
- AsSortedList, near ring ideals 6.5.2
- AsSortedList, near rings 2.7.2
- AsTransformationNearRing 5.4.1
- AutomorphismNearRing 5.2.6
- Automorphisms 1.4.1
- Automorphisms, near rings 2.13.1
- BlockIntersectionNumbers 11.2.6
- BlockIntersectionNumbersK 11.2.6
- BlocksIncidentPoints 11.3.3
- BlocksOfDesign 11.2.2
- CentralizerNearRing 5.2.12
- ClosureNearRingIdeal 6.11.5
- ClosureNearRingLeftIdeal 6.11.3
- ClosureNearRingRightIdeal 6.11.4
- Commutators 6.12
- Comparision of ideals 6.10
- CompatibleFunctionNearRing 5.2.8
- CongruenceNoetherianQuotient, for nearrings of polynomial functions 5.5.2
- CongruenceNoetherianQuotientForInnerAutomorphismNearRings , for inner automorphism nearrings 5.5.3
- ConstantEndoMapping 4.1.7
- Constructing a design 11.1
- Constructing subnearrings 2.17
- Constructing transformation nearrings 5.1
- Construction of N-groups 8.1
- Construction of nearring ideals 6.1
- Construction of nearrings 2.2
- Coset representatives 1.10
- Defining a nearring multiplication 2.1
- Defining endo mappings 4.1
- DegreeOfIrredFpfRep2 9.2.4
- DegreeOfIrredFpfRep3 9.2.5
- DegreeOfIrredFpfRep4 9.2.6
- DegreeOfIrredFpfRepCyclic 9.2.2
- DegreeOfIrredFpfRepMetacyclic 9.2.3
- DesignFromFerreroPair 11.1.4
- DesignFromIncidenceMat 11.1.2
- DesignFromPlanarNearRing 11.1.3
- DesignFromPointsAndBlocks 11.1.1
- DesignFromWdNearRing 11.1.5
- DesignParameter 11.2.3
- Designs 11.0
- Dickson nearfields 10.2
- Dickson numbers 10.1
- DicksonNearFields 10.2.1
- Direct products of nearrings 2.3
- DirectProductNearRing 2.3.1
- DistributiveElements 2.21.2
- Distributivity in a nearring 2.21
- Distributors 2.21.1
- Elements of a nearring with special properties 2.22
- EndoMappingByFunction 4.1.2
- EndoMappingByPositionList 4.1.1
- EndomorphismNearRing 5.2.5
- Endomorphisms 1.3.1
- Endomorphisms, near rings 2.12.1
- Enumerator, near ring ideals 6.5.3
- Enumerator, near rings 2.7.3
- Exceptional nearfields 10.3
- ExceptionalNearFields 10.3.1
- ExplicitMultiplicationNearRing 2.2.1
- ExplicitMultiplicationNearRingNC 2.2.2
- Extracting nearrings from the library 3.1
- Factor nearrings 6.14
- FactorNearRing 6.14.1
- Fixed-point-free automorphism groups 9.0 9.3
- Fixed-point-free automorphism groups and Frobenius groups 9.1
- Fixed-point-free representations 9.2
- FpfAutomorphismGroups2 9.3.3
- FpfAutomorphismGroups3 9.3.4
- FpfAutomorphismGroups4 9.3.5
- FpfAutomorphismGroupsCyclic 9.3.1
- FpfAutomorphismGroupsMaxSize 9.1.2
- FpfAutomorphismGroupsMetacyclic 9.3.2
- FpfRepresentations2 9.2.9
- FpfRepresentations3 9.2.10
- FpfRepresentations4 9.2.11
- FpfRepresentationsCyclic 9.2.7
- FpfRepresentationsMetacyclic 9.2.8
- FrobeniusGroup 9.1.3
- Functions for N-groups 8.3
- Gamma 5.3.1
- Generators of nearring ideals 6.4
- GeneratorsOfNearRing 2.9.1
- GeneratorsOfNearRingIdeal 6.4.1
- GeneratorsOfNearRingLeftIdeal 6.4.2
- GeneratorsOfNearRingRightIdeal 6.4.3
- Graphic ideal lattices (XGAP only) 7.0
- GraphicIdealLattice 7.0
- GraphOfMapping 4.4.1
- Group automorphisms 1.4
- Group endomorphisms 1.3
- Group reducts of ideals 6.9
- GroupReduct 2.11.1
- GroupReduct, near ring ideals 6.9.1
- Ideals of N-groups 8.6
- IdempotentElements 2.22.2
- Identifying nearrings 3.2
- Identity 2.19.1
- Identity of a nearring 2.19
- IdentityEndoMapping 4.1.6
- IdLibraryNearRing 3.2.1
- IdLibraryNearRingWithOne 3.2.2
- IdTWGroup 1.1.2
- in 6.7.1
- IncidenceMat 11.2.4
- Inner automorphisms of a group 1.5
- InnerAutomorphismNearRing 5.2.7
- InnerAutomorphisms 1.5.1
- Intersection 6.11.2
- Intersection of nearrings 2.18
- Intersection, for nearring ideals 6.11.1
- Intersection, for nearrings 2.18.1
- Invariant subgroups 1.9
- Invariant subnearrings 2.16
- InvariantSubNearRings 2.16.1
- Is1AffineComplete 5.2.11
- Is2TameNGroup 8.7.3
- Is3TameNGroup 8.7.4
- IsAbelianNearRing 2.23.1
- IsAbstractAffineNearRing 2.23.2
- IsBooleanNearRing 2.23.3
- IsCharacteristicInParent 1.9.3
- IsCharacteristicSubgroup 1.9.2
- IsCircularDesign 11.2.7
- IsCommutative 2.23.7
- IsCompatible 8.7.1
- IsCompatibleEndoMapping 5.2.10
- IsConstantEndoMapping 4.2.2
- IsDgNearRing 2.23.8
- IsDistributiveEndoMapping 4.2.3
- IsDistributiveNearRing 2.21.3
- IsEndoMapping 4.1.5
- IsExplicitMultiplicationNearRing 2.2.4
- IsFpfAutomorphismGroup 9.1.1
- IsFpfRepresentation 9.2.1
- IsFullinvariant 1.9.4
- IsFullinvariantInParent 1.9.5
- IsFullTransformationNearRing 5.2.3
- IsIdentityEndoMapping 4.2.1
- IsIntegralNearRing 2.23.9
- IsInvariantUnderMaps 1.9.1
- IsIsomorphicGroup 1.6.1
- IsIsomorphicNearRing 2.14.1
- IsLibraryNearRing 3.3 3.3.1
- IsMaximalNearRingIdeal 6.3.2
- IsMonogenic 8.7.5
- IsN0SimpleNGroup 8.6.5
- IsNearField 2.23.13
- IsNearRing 2.2.3
- IsNearRingIdeal 6.2.4
- IsNearRingLeftIdeal 6.2.2
- IsNearRingMultiplication 2.1.1
- IsNearRingRightIdeal 6.2.3
- IsNearRingUnit 2.20.1
- IsNearRingWithOne 2.19.3
- IsNGroup 8.3.1
- IsNIdeal 8.6.3
- IsNilNearRing 2.23.4
- IsNilpotentFreeNearRing 2.23.6
- IsNilpotentNearRing 2.23.5
- IsNRI 6.2.1
- IsNSubgroup 8.4.3
- Isomorphic groups 1.6
- Isomorphic nearrings 2.14
- IsPairOfDicksonNumbers 10.1.1
- IsPlanarNearRing 2.23.14
- IsPointIncidentBlock 11.3.1
- IsPrimeNearRing 2.23.10
- IsPrimeNearRingIdeal 6.3.1
- IsQuasiregularNearRing 2.23.11
- IsRegularNearRing 2.23.12
- IsSimpleNearRing 6.13.1
- IsSimpleNGroup 8.6.4
- IsStronglyMonogenic 8.7.6
- IsSubgroupNearRingLeftIdeal 6.2.5
- IsSubgroupNearRingRightIdeal 6.2.6
- IsTameNGroup 8.7.2
- IsWdNearRing 2.23.15
- LibraryNearRing 3.1.1
- LibraryNearRingInfo 3.4.1
- LibraryNearRingWithOne 3.1.4
- LocalInterpolationNearRing 5.2.14
- MapNearRing 5.2.1
- Membership of an ideal 6.7
- Modified symbols for the operation tables 2.5
- N-groups 8.0
- N-subgroups 8.4
- N0-subgroups 8.5
- N0Subgroups 8.5.1
- Near-ring ideal elements 6.5
- Nearfields, planar nearrings and weakly divisible nearrings 10.0
- Nearring automorphisms 2.13
- Nearring elements 2.7
- Nearring endomorphisms 2.12
- Nearring generators 2.9
- Nearring ideals 6.0
- Nearring radicals 8.9
- NearRingActingOnNGroup 8.3.2
- NearRingCommutator 6.12.1
- NearRingIdealByGenerators 6.1.1
- NearRingIdealBySubgroupNC 6.1.4
- NearRingIdeals 6.1.7
- NearRingLeftIdealByGenerators 6.1.2
- NearRingLeftIdealBySubgroupNC 6.1.5
- NearRingLeftIdeals 6.1.8
- NearRingMultiplicationByOperationTable 2.1.2
- NearRingRightIdealByGenerators 6.1.3
- NearRingRightIdealBySubgroupNC 6.1.6
- NearRingRightIdeals 6.1.9
- Nearrings 2.0
- Nearrings of transformations 5.2
- NearRingUnits 2.20.2
- NGroup 8.1.1
- NGroupByApplication 8.1.3
- NGroupByNearRingMultiplication 8.1.2
- NGroupByRightIdealFactor 8.1.4
- Nicer ways to print a mapping 4.4
- NIdeal 8.6.1
- NIdeals 8.6.2
- NilpotentElements 2.22.3
- Noetherian quotients 8.8
- Noetherian quotients for transformation nearrings 5.5
- NoetherianQuotient 8.8.1
- NoetherianQuotient, for transformation nearrings 5.5.1
- NontrivialRepresentativesModNormalSubgroup 1.10.2
- Normal subgroups generated by a single element 1.8
- NSubgroup 8.4.1
- NSubgroups 8.4.2
- NumberLibraryNearRings 3.1.2
- NumberLibraryNearRingsWithOne 3.1.5
- NumberOfDicksonNearFields 10.2.2
- NuRadical 8.9.1
- NuRadicals 8.9.2
- One 2.19.2
- OneGeneratedNormalSubgroups 1.8.1
- Operation tables for groups 1.2
- Operation tables for nearrings 2.4
- Operation tables of N-groups 8.2
- Operations for endo mappings 4.3
- Operations with ideals 6.11
- OrbitRepresentativesForPlanarNearRing 10.4.2
- Other useful functions for groups 1.12
- Planar nearrings 10.4
- PlanarNearRing 10.4.1
- PointsIncidentBlocks 11.3.2
- PointsOfDesign 11.2.1
- PolynomialNearRing 5.2.4
- Predefined groups 1.1
- PrintAsTerm 4.4.2
- PrintIncidenceMat 11.2.5
- PrintTable 1.2.1
- PrintTable, for N-groups 8.2.1
- PrintTable, near rings 2.4.1
- Properties of a design 11.2
- Properties of endo mappings 4.2
- QuasiregularElements 2.22.4
- Random ideal elements 6.6
- Random nearring elements 2.8
- Random, near ring element 2.8.1
- Random, near ring ideal element 6.6.1
- RegularElements 2.22.5
- RepresentativesModNormalSubgroup 1.10.1
- RestrictedEndomorphismNearRing 5.2.13
- Scott length 1.11
- ScottLength 1.11.1
- SetSymbols 2.5.1
- SetSymbolsSupervised 2.5.1
- Simple nearrings 6.13
- Size of a nearring 2.10
- Size of ideals 6.8
- Size, near ring ideals 6.8.1
- Size, near rings 2.10.1
- Special ideal properties 6.3
- Special properties of a nearring 2.23
- Special properties of N-groups 8.7
- Subgroups 1.7.1
- Subgroups of a group 1.7
- SubNearRingBySubgroupNC 2.17.1
- SubNearRings 2.15.1
- Subnearrings 2.15
- Supportive functions for groups 1.0
- Symbols 2.5.2
- Testing for ideal properties 6.2
- The additive group of a nearring 2.11
- The group a transformation nearring acts on 5.3
- The nearring library 3.0
- Transformation nearrings 5.0
- Transformation nearrings and other nearrings 5.4
- TransformationNearRing 5.2.2
- TransformationNearRingByAdditiveGenerators 5.1.2
- TransformationNearRingByGenerators 5.1.1
- TWGroup 1.1.1
- TypeOfNGroup 8.7.7
- Units of a nearring 2.20
- WdNearRing 10.5.1
- Weakly divisible nearrings 10.5
- Working with the points and blocks of a design 11.3
- Zerosymmetric mappings 5.6
- ZeroSymmetricCompatibleFunctionNearRing 5.2.9
- ZeroSymmetricElements 2.22.1
- ZeroSymmetricPart, for transformation nearrings 5.6.1
[Up]
SONATA manual
December 2022