[BE99a] Besche, H. U. and Eick, B., Construction of finite groups, J. Symbolic Comput., 27 (4) (1999), 387–404.
[BE99b] Besche, H. U. and Eick, B., The groups of order at most 1000 except 512 and 768, J. Symbolic Comput., 27 (4) (1999), 405–413.
[BE01] Besche, H. U. and Eick, B., The groups of order q^n ⋅ p, Comm. Algebra, 29 (4) (2001), 1759–1772.
[BEO01] Besche, H. U., Eick, B. and O'Brien, E. A., The groups of order at most 2000, Electron. Res. Announc. Amer. Math. Soc., 7 (2001), 1–4 (electronic).
[BEO02] Besche, H. U., Eick, B. and O'Brien, E. A., A millennium project: constructing small groups, Internat. J. Algebra Comput., 12 (5) (2002), 623–644.
[Bur21] Burrell, D., On the number of groups of order 1024, Communications in Algebra (2021), 1–3.
[DE05] Dietrich, H. and Eick, B., On the groups of cube-free order, J. Algebra, 292 (1) (2005), 122–137.
[EO99a] Eick, B. and O'Brien, E. A.,
Enumerating p-groups,
J. Austral. Math. Soc. Ser. A,
67 (2)
(1999),
191–205
(Group theory).
[EO99b] Eick, B. and O'Brien, E. A. (Matzat, B. H., Greuel, G.-M. and Hiss, G., Eds.),
The groups of order 512,
in Algorithmic algebra and number theory (Heidelberg,
1997),
Springer,
Berlin
(1999),
379–380
(Proceedings of Abschlusstagung des DFG Schwerpunktes
Algorithmische Algebra und Zahlentheorie in Heidelberg).
[Gir03] Girnat, B., Klassifikation der Gruppen bis zur Ordnung p^5, Staatsexamensarbeit, TU Braunschweig, Braunschweig, Germany (2003).
[New77] Newman, M. F. (Bryce, R. A., Cossey, J. and Newman, M. F., Eds.),
Determination of groups of prime-power order,
in Group theory (Proc. Miniconf., Australian Nat. Univ.,
Canberra, 1975),
Springer,
Lecture Notes in Math.,
573,
Berlin
(1977),
73–84. Lecture Notes in Math., Vol. 573
(Lecture Notes in Mathematics, Vol. 573).
[NOV04] Newman, M. F., O'Brien, E. A. and Vaughan-Lee, M. R., Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra, 278 (1) (2004), 383–401.
[O'B90] O'Brien, E. A.,
The p-group generation algorithm,
J. Symbolic Comput.,
9 (5-6)
(1990),
677–698
(Computational group theory, Part 1).
[O'B91] O'Brien, E. A., The groups of order 256, J. Algebra, 143 (1) (1991), 219–235.
[OV05] O'Brien, E. A. and Vaughan-Lee, M. R., The groups with order p^7 for odd prime p, J. Algebra, 292 (1) (2005), 243–258.
generated by GAPDoc2HTML