[CM93] Collingwood, D. H. and McGovern, W. M., Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Co., Van Nostrand Reinhold Mathematics Series, New York (1993).
[dG11] de Graaf, W. A., Computing representatives of nilpotent orbits of θ-groups, J. Symbolic Comput., 46 (2011), 438--458.
[dGVY12] de Graaf, W. A., Vinberg, E. B. and Yakimova, O. S., An effective method to compute closure ordering for nilpotent orbits of θ-representations, J. Algebra, 371 (2012), 38--62.
[GE09] Graaf, W. A. d. and Elashvili, A. G.,
Induced nilpotent orbits of the simple Lie algebras
of exceptional type,
Georgian Mathematical Journal,
16 (2)
(2009),
257-278
({\tt arXiv:0905.2743v1}[math.RT]).
[Gra08] Graaf, W. A. d., Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS J. Comput. Math., 11 (2008), 280-297 (electronic).
[Gra11] Graaf, W. A. d., Constructing semisimple subalgebras of semisimple Lie algebras, J. Algebra, 325 (1) (2011), 416--430.
[Hel78] Helgason, S., Differential geometry, Lie groups, and symmetric spaces, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], Pure and Applied Mathematics, 80, New York (1978).
[Hes79] Hesselink, W. H., Desingularizations of varieties of nullforms, Invent. Math., 55 (2) (1979), 141--163.
[Pop03] Popov, V. L.,
The cone of Hilbert null forms,
Tr. Mat. Inst. Steklova,
241 (Teor. Chisel, Algebra i Algebr. Geom.)
(2003),
192--209
(English translation in: {\em Proc. Steklov Inst. Math.} 241 (2003),
no. 1, 177--194).
[Vin75] Vinberg, E. B., The classification of nilpotent elements of graded Lie algebras, Dokl. Akad. Nauk SSSR, 225 (4) (1975), 745-748.
[Vin76] Vinberg, E. B.,
The Weyl group of a graded Lie algebra,
Izv. Akad. Nauk SSSR Ser. Mat.,
40 (3)
(1976),
488-526, 709
(English translation: Math. USSR-Izv. 10, 463-495 (1976)).
[Vin79] Vinberg, E. B.,
Classification of homogeneous nilpotent elements of a
semisimple graded Lie algebra,
Trudy Sem. Vektor. Tenzor. Anal. (19)
(1979),
155-177
(English translation: Selecta Math. Sov. 6, 15-35 (1987)).
[VP89] Vinberg, {. B. and Popov, V. L.,
Invariant theory,
in Algebraic geometry, 4 (Russian),
Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn.
Inform.,
Itogi Nauki i Tekhniki,
Moscow
(1989),
137--314
(English translation in: V. L. Popov and {\`E}. B. Vinberg,
{\em Invariant Theory}, in: {\em Algebraic Geometry IV}, Encyclopedia of
Mathematical
Sciences, Vol. 55, Springer-Verlag,
{\em Proc. Steklov Inst. Math.} 264 (2009), no. 1, 146--158).
generated by GAPDoc2HTML