*
, for multiple of ideal of affine semigroup 11.5-9 +
, for defining ideal of affine semigroup 11.5-1 -
, for ideals of numerical semigroup 7.1-23 \+
, for numerical semigroups 5.2-2 \/
, quotient of numerical semigroup 5.2-3 \[ \]
, for ideals of numerical semigroups 7.1-18 \in
, membership for good ideal 12.5-5 \{ \}
, for ideals of numerical semigroups 7.1-19 AbsoluteIrreduciblesOfGoodSemigroup
12.5-8 AddSpecialGapOfAffineSemigroup
11.1-14 AddSpecialGapOfNumericalSemigroup
5.1-2 AdjacentCatenaryDegreeOfSetOfFactorizations
9.3-2 Adjustment
9.2-17 AdjustmentOfNumericalSemigroup
9.2-17 AffineSemigroup
, by equations 11.1-2 AffineSemigroupByEquations
11.1-2 AffineSemigroupByGaps
11.1-5 AffineSemigroupByGenerators
11.1-1 AffineSemigroupByInequalities
11.1-3 AffineSemigroupByPMInequality
11.1-4 AllMinimalRelationsOfNumericalSemigroup
4.1-5 AlmostSymmetricNumericalSemigroupsFromIrreducible
6.3-1 AlmostSymmetricNumericalSemigroupsFromIrreducibleAndGivenType
6.3-2 AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber
6.3-4 AlmostSymmetricNumericalSemigroupsWithFrobeniusNumberAndType
6.3-5 AmalgamationOfNumericalSemigroups
12.1-3 AmbientAffineSemigroupOfIdeal
11.5-5 AmbientGoodSemigroupOfGoodIdeal
12.5-3 AmbientNumericalSemigroupOfIdeal
7.1-5 AnIrreducibleNumericalSemigroupWithFrobeniusNumber
6.1-4 ANumericalSemigroupWithPseudoFrobeniusNumbers
5.7-4 AperyList
, for ideals of numerical semigroups with respect to element 7.3-12 AperyListOfIdealOfNumericalSemigroupWRTElement
7.3-12 AperyListOfNumericalSemigroup
3.1-16 AperyListOfNumericalSemigroupAsGraph
3.1-18 AperyListOfNumericalSemigroupWRTElement
3.1-15 AperyListOfNumericalSemigroupWRTInteger
3.1-17 AperySetOfGoodSemigroup
12.2-15 AperyTable
7.3-14 AperyTableOfNumericalSemigroup
7.3-14 ApplyPatternToIdeal
7.4-5 ApplyPatternToNumericalSemigroup
7.4-6 ArfCharactersOfArfNumericalSemigroup
8.2-3 ArfClosure
, of good semigroup 12.4-1 ArfGoodSemigroupClosure
12.4-1 ArfNumericalSemigroupClosure
8.2-2 ArfNumericalSemigroupsWithFrobeniusNumber
8.2-4 ArfNumericalSemigroupsWithFrobeniusNumberUpTo
8.2-5 ArfNumericalSemigroupsWithGenus
8.2-6 ArfNumericalSemigroupsWithGenusAndFrobeniusNumber
8.2-8 ArfNumericalSemigroupsWithGenusUpTo
8.2-7 ArfOverSemigroups
8.2-10 ArfSpecialGaps
8.2-9 AsAffineSemigroup
11.1-15 AsGluingOfNumericalSemigroups
6.2-1 AsIdealOfNumericalSemigroup
7.4-3 AsNumericalDuplication
5.2-6 AsymptoticRatliffRushNumber
7.3-9 AsymptoticRatliffRushNumberOfIdealOfNumericalSemigroup
7.3-9 BasisOfGroupGivenByEquations
11.1-22 BelongsToAffineSemigroup
11.1-17 BelongsToGoodIdeal
12.5-5 BelongsToGoodSemigroup
12.2-1 BelongsToHomogenizationOfNumericalSemigroup
9.5-1 BelongsToIdealOfAffineSemigroup
11.5-7 BelongsToIdealOfNumericalSemigroup
7.1-15 BelongsToNumericalSemigroup
2.2-7 BettiElements
, of affine semigroup 11.3-7 BettiElementsOfAffineSemigroup
11.3-7 BettiElementsOfNumericalSemigroup
4.1-3 BezoutSequence
A.1-1 BinomialIdealOfNumericalSemigroup
4.2-1 BlowUp
, for ideals of numerical semigroups 7.3-3 BlowUpIdealOfNumericalSemigroup
7.3-3 BlowUpOfNumericalSemigroup
7.3-5 BoundForConductorOfImageOfPattern
7.4-4 BuchsbaumNumberOfAssociatedGradedRingNumericalSemigroup
7.5-4 CanonicalBasisOfKernelCongruence
11.3-4 CanonicalIdeal
, for numerical semigroups 7.1-29 CanonicalIdealOfGoodSemigroup
12.5-7 CanonicalIdealOfNumericalSemigroup
7.1-29 CartesianProductOfNumericalSemigroups
12.1-4 CatenaryDegree
, for a numerical semigroup and one of its elements 9.3-5 CatenaryDegreeOfAffineSemigroup
11.4-6 CatenaryDegreeOfElementInNumericalSemigroup
9.3-5 CatenaryDegreeOfNumericalSemigroup
9.3-7 CatenaryDegreeOfSetOfFactorizations
9.3-1 CeilingOfRational
A.1-3 CircuitsOfKernelCongruence
11.3-1 CocycleOfNumericalSemigroupWRTElement
3.1-21 CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber
6.2-3 Conductor
, for good semigroups 12.2-2 ConductorOfGoodSemigroup
12.2-2 ConductorOfIdealOfNumericalSemigroup
7.1-10 ConductorOfNumericalSemigroup
3.1-23 CurveAssociatedToDeltaSequence
10.2-4 CyclotomicExponentSequence
10.1-9 DecomposeIntegralIdealIntoIrreducibles
7.2-2 DecomposeIntoArfIrreducibles
8.2-12 DecomposeIntoIrreducibles
, for numerical semigroup 6.1-7 DegreesOffEqualPrimitiveElementsOfNumericalSemigroup
9.3-8 DegreesOfMonotonePrimitiveElementsOfNumericalSemigroup
9.3-10 DegreesOfPrimitiveElementsOfAffineSemigroup
11.3-11 DegreesOfPrimitiveElementsOfNumericalSemigroup
4.1-6 DeltaSequencesWithFrobeniusNumber
10.2-3 DeltaSet
, for a numerical semigroup 9.2-11 DeltaSetListUpToElementWRTNumericalSemigroup
9.2-9 DeltaSetOfAffineSemigroup
11.4-5 DeltaSetOfFactorizationsElementWRTNumericalSemigroup
9.2-6 DeltaSetOfNumericalSemigroup
9.2-11 DeltaSetOfSetOfIntegers
9.2-5 DeltaSetPeriodicityBoundForNumericalSemigroup
9.2-7 DeltaSetPeriodicityStartForNumericalSemigroup
9.2-8 DeltaSetUnionUpToElementWRTNumericalSemigroup
9.2-10 DenumerantFunction
9.1-8 DenumerantIdeal
, denumerant ideal of a given number of factorizations in a numerical semigroup 9.1-9 DenumerantOfElementInNumericalSemigroup
9.1-7 Deserts
3.1-28 DesertsOfNumericalSemigroup
3.1-28 Difference
, for ideals of numerical semigroups 7.1-24 DifferenceOfIdealsOfNumericalSemigroup
7.1-24 DifferenceOfNumericalSemigroups
3.1-14 DilatationOfNumericalSemigroup
5.2-8 DivisorsOfElementInNumericalSemigroup
9.6-3 DotBinaryRelation
14.1-1 DotEliahouGraph
14.1-9 DotFactorizationGraph
14.1-8 DotOverSemigroupsNumericalSemigroup
14.1-6 DotRosalesGraph
, for affine semigroup 14.1-7 DotSplash
14.1-11 DotTreeOfGluingsOfNumericalSemigroup
14.1-5 Elasticity
, for affine semigroups 11.4-4 ElasticityOfAffineSemigroup
11.4-4 ElasticityOfFactorizationsElementWRTAffineSemigroup
11.4-3 ElasticityOfFactorizationsElementWRTNumericalSemigroup
9.2-3 ElasticityOfNumericalSemigroup
9.2-4 ElementNumber_IdealOfNumericalSemigroup
7.1-16 ElementNumber_NumericalSemigroup
3.1-11 ElementsUpTo
3.1-7 EliahouNumber
, for numerical semigroup 3.2-2 EliahouSlicesOfNumericalSemigroup
3.2-4 EmbeddingDimension
, for numerical semigroup 3.1-3 EmbeddingDimensionOfNumericalSemigroup
3.1-3 EqualCatenaryDegreeOfAffineSemigroup
11.4-7 EqualCatenaryDegreeOfNumericalSemigroup
9.3-9 EqualCatenaryDegreeOfSetOfFactorizations
9.3-3 EquationsOfGroupGeneratedBy
11.1-21 Factorizations
11.4-2 FactorizationsElementListWRTNumericalSemigroup
9.1-3 FactorizationsElementWRTNumericalSemigroup
9.1-2 FactorizationsInHomogenizationOfNumericalSemigroup
9.5-2 FactorizationsIntegerWRTList
9.1-1 FactorizationsVectorWRTList
11.4-1 FengRaoDistance
9.7-1 FengRaoNumber
9.7-2 FiniteComplementIdealExtension
11.1-6 FirstElementsOfNumericalSemigroup
3.1-6 ForcedIntegersForPseudoFrobenius
5.7-1 FreeNumericalSemigroupsWithFrobeniusNumber
6.2-5 FrobeniusNumber
, for ideal of numerical semigroup 7.1-11 FrobeniusNumberOfIdealOfNumericalSemigroup
7.1-11 FrobeniusNumberOfNumericalSemigroup
3.1-22 FundamentalGaps
, for numerical semigroup 3.1-34 FundamentalGapsOfNumericalSemigroup
3.1-34 Gaps
, for affine semigroup 11.1-7 GapsOfNumericalSemigroup
3.1-26 Generators
, for affine semigroup 11.1-11 GeneratorsKahlerDifferentials
10.2-9 GeneratorsModule_Global
10.2-8 GeneratorsOfAffineSemigroup
11.1-11 GeneratorsOfIdealOfNumericalSemigroup
7.1-4 GeneratorsOfKernelCongruence
11.3-3 GeneratorsOfNumericalSemigroup
3.1-2 Genus
, for affine semigroup 11.1-8 GenusOfGoodSemigroup
12.2-13 GenusOfNumericalSemigroup
3.1-33 GluingOfAffineSemigroups
11.2-1 GoodGeneratingSystemOfGoodIdeal
12.5-2 GoodIdeal
12.5-1 GoodSemigroup
12.1-5 GoodSemigroupByMaximalElements
12.2-10 GoodSemigroupBySmallElements
12.2-7 GraeffePolynomial
10.1-5 GraphAssociatedToElementInNumericalSemigroup
4.1-2 GraverBasis
11.3-5 HasseDiagramOfAperyListOfNumericalSemigroup
14.1-4 HasseDiagramOfBettiElementsOfNumericalSemigroup
14.1-3 HasseDiagramOfNumericalSemigroup
14.1-2 HilbertBasisOfSystemOfHomogeneousEquations
11.1-19 HilbertBasisOfSystemOfHomogeneousInequalities
11.1-20 HilbertFunction
7.3-2 HilbertFunctionOfIdealOfNumericalSemigroup
7.3-1 HilbertSeriesOfNumericalSemigroup
10.1-4 Holes
, for numerical semigroup 3.1-31 HolesOfNumericalSemigroup
3.1-31 HomogeneousBettiElementsOfNumericalSemigroup
9.5-3 HomogeneousCatenaryDegreeOfAffineSemigroup
11.4-8 HomogeneousCatenaryDegreeOfNumericalSemigroup
9.5-4 IdealByDivisorClosedSet
7.1-8 IdealOfAffineSemigroup
11.5-1 IdealOfNumericalSemigroup
7.1-1 InductiveNumericalSemigroup
5.2-7 Intersection
, for ideals of affine semigroups 11.5-12 IntersectionIdealsOfAffineSemigroup
11.5-12 IntersectionIdealsOfNumericalSemigroup
7.1-27 IntersectionOfNumericalSemigroups
5.2-1 IrreducibleMaximalElementsOfGoodSemigroup
12.2-9 IrreducibleNumericalSemigroupsWithFrobeniusNumber
6.1-5 IrreducibleNumericalSemigroupsWithFrobeniusNumberAndMultiplicity
6.1-6 IrreducibleZComponents
7.2-1 IsACompleteIntersectionNumericalSemigroup
6.2-2 IsAcute
, for numerical semigroups 3.1-30 IsAcuteNumericalSemigroup
3.1-30 IsAdditiveNumericalSemigroup
9.2-13 IsAdmissiblePattern
7.4-1 IsAdmittedPatternByIdeal
7.4-7 IsAdmittedPatternByNumericalSemigroup
7.4-8 IsAffineSemigroup
11.1-16 IsAffineSemigroupByEquations
11.1-16 IsAffineSemigroupByGenerators
11.1-16 IsAffineSemigroupByInequalities
11.1-16 IsAlmostCanonicalIdeal
7.1-31 IsAlmostSymmetric
6.3-3 IsAlmostSymmetricNumericalSemigroup
6.3-3 IsAperyListOfNumericalSemigroup
2.2-4 IsAperySetAlphaRectangular
6.2-13 IsAperySetBetaRectangular
6.2-12 IsAperySetGammaRectangular
6.2-11 IsArf
8.2-1 IsArfIrreducible
8.2-11 IsArfNumericalSemigroup
8.2-1 IsBezoutSequence
A.1-2 IsCanonicalIdeal
7.1-30 IsCanonicalIdealOfNumericalSemigroup
7.1-30 IsComplementOfIntegralIdeal
7.1-7 IsCompleteIntersection
6.2-2 IsCyclotomicNumericalSemigroup
10.1-8 IsCyclotomicPolynomial
10.1-6 IsDeltaSequence
10.2-2 IsFree
6.2-4 IsFreeNumericalSemigroup
6.2-4 IsFull
11.1-18 IsFullAffineSemigroup
11.1-18 IsGeneralizedAlmostSymmetric
6.4-4 IsGeneralizedGorenstein
6.4-1 IsGeneric
, for affine semigroups 11.3-9 IsGenericAffineSemigroup
11.3-9 IsGenericNumericalSemigroup
4.3-2 IsGoodSemigroup
12.1-1 IsGradedAssociatedRingNumericalSemigroupBuchsbaum
7.5-2 IsGradedAssociatedRingNumericalSemigroupCI
7.5-6 IsGradedAssociatedRingNumericalSemigroupCM
7.5-1 IsGradedAssociatedRingNumericalSemigroupGorenstein
7.5-5 IsHomogeneousNumericalSemigroup
9.8-3 IsIdealOfAffineSemigroup
11.5-2 IsIdealOfNumericalSemigroup
7.1-2 IsIntegral
, for ideal of numerical semigroup 7.1-6 IsIntegralIdealOfAffineSemigroup
11.5-6 IsIntegralIdealOfNumericalSemigroup
7.1-6 IsIrreducible
, for numerical semigroups 6.1-1 IsIrreducibleNumericalSemigroup
6.1-1 IsKroneckerPolynomial
10.1-7 IsListOfIntegersNS
A.2-2 IsLocal
, for good semigroups 12.2-4 IsMED
8.1-1 IsMEDNumericalSemigroup
8.1-1 IsMinimalRelationOfNumericalSemigroup
4.1-4 IsModularNumericalSemigroup
2.2-1 IsMonomialNumericalSemigroup
10.2-10 IsMpure
9.8-2 IsMpureNumericalSemigroup
9.8-2 IsNearlyGorenstein
6.4-2 IsNumericalSemigroup
2.2-1 IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity
6.2-9 IsNumericalSemigroupByAperyList
2.2-1 IsNumericalSemigroupByFundamentalGaps
2.2-1 IsNumericalSemigroupByGaps
2.2-1 IsNumericalSemigroupByGenerators
2.2-1 IsNumericalSemigroupByInterval
2.2-1 IsNumericalSemigroupByOpenInterval
2.2-1 IsNumericalSemigroupBySmallElements
2.2-1 IsNumericalSemigroupBySubAdditiveFunction
2.2-1 IsNumericalSemigroupPolynomial
10.1-2 IsOrdinary
, for numerical semigroups 3.1-29 IsOrdinaryNumericalSemigroup
3.1-29 IsProportionallyModularNumericalSemigroup
2.2-1 IsPseudoSymmetric
, for numerical semigroups 6.1-3 IsPseudoSymmetricNumericalSemigroup
6.1-3 IsPure
9.8-1 IsPureNumericalSemigroup
9.8-1 IsSaturated
8.3-1 IsSaturatedNumericalSemigroup
8.3-1 IsSelfReciprocalUnivariatePolynomial
10.1-11 IsStronglyAdmissiblePattern
7.4-2 IsSubsemigroupOfNumericalSemigroup
2.2-5 IsSubset
2.2-6 IsSuperSymmetricNumericalSemigroup
9.8-4 IsSymmetric
, for good semigroups 12.3-1 IsSymmetricGoodSemigroup
12.3-1 IsSymmetricNumericalSemigroup
6.1-2 IsTelescopic
6.2-6 IsTelescopicNumericalSemigroup
6.2-6 IsUniquelyPresented
, for affine semigroups 11.3-10 IsUniquelyPresentedAffineSemigroup
11.3-10 IsUniquelyPresentedNumericalSemigroup
4.3-1 IsUniversallyFree
6.2-8 IsUniversallyFreeNumericalSemigroup
6.2-8 Iterator
, for ideals of numerical semigroups 7.1-20 KunzCoordinates
, for a numerical semigroup and (optionally) an integer 3.1-19 KunzCoordinatesOfNumericalSemigroup
3.1-19 KunzPolytope
3.1-20 LatticePathAssociatedToNumericalSemigroup
3.1-32 LegendrianGenericNumericalSemigroup
10.3-1 Length
, for good semigroup 12.2-14 LengthOfGoodSemigroup
12.2-14 LengthsOfFactorizationsElementWRTNumericalSemigroup
9.2-2 LengthsOfFactorizationsIntegerWRTList
9.2-1 LipmanSemigroup
7.3-6 LShapes
9.1-5 LShapesOfNumericalSemigroup
9.1-5 MaximalDenumerant
9.2-16 MaximalDenumerantOfElementInNumericalSemigroup
9.2-14 MaximalDenumerantOfNumericalSemigroup
9.2-16 MaximalDenumerantOfSetOfFactorizations
9.2-15 MaximalElementsOfGoodSemigroup
12.2-8 MaximalIdeal
, for affine semigroups 11.5-13 MaximalIdealOfNumericalSemigroup
7.1-28 MaximumDegree
9.2-12 MaximumDegreeOfElementWRTNumericalSemigroup
9.2-12 MEDClosure
8.1-2 MEDNumericalSemigroupClosure
8.1-2 MicroInvariants
7.3-11 MicroInvariantsOfNumericalSemigroup
7.3-11 MinimalArfGeneratingSystemOfArfNumericalSemigroup
8.2-3 MinimalGeneratingSystem
, for affine semigroup 11.1-12 MinimalGeneratingSystemOfIdealOfNumericalSemigroup
7.1-3 MinimalGeneratingSystemOfNumericalSemigroup
3.1-2 MinimalGenerators
, for affine semigroup 11.1-12 MinimalGoodGeneratingSystemOfGoodIdeal
12.5-4 MinimalGoodGeneratingSystemOfGoodSemigroup
12.2-11 MinimalGoodGenerators
12.2-11 MinimalMEDGeneratingSystemOfMEDNumericalSemigroup
8.1-3 MinimalPresentation
, for affine semigroup 11.3-6 MinimalPresentationOfAffineSemigroup
11.3-6 MinimalPresentationOfNumericalSemigroup
4.1-1 Minimum
, minimum of ideal of numerical semigroup 7.1-14 ModularNumericalSemigroup
2.1-8 MoebiusFunction
9.6-2 MoebiusFunctionAssociatedToNumericalSemigroup
9.6-1 MonotoneCatenaryDegreeOfAffineSemigroup
11.4-9 MonotoneCatenaryDegreeOfNumericalSemigroup
9.3-11 MonotoneCatenaryDegreeOfSetOfFactorizations
9.3-4 MultipleOfIdealOfAffineSemigroup
11.5-9 MultipleOfIdealOfNumericalSemigroup
7.1-22 MultipleOfNumericalSemigroup
5.2-4 Multiplicity
, for good semigroups 12.2-3 MultiplicityOfNumericalSemigroup
3.1-1 MultiplicitySequence
7.3-10 MultiplicitySequenceOfNumericalSemigroup
7.3-10 NearlyGorensteinVectors
6.4-3 NextElementOfNumericalSemigroup
3.1-10 NumberElement_IdealOfNumericalSemigroup
7.1-17 NumberElement_NumericalSemigroup
3.1-12 NumericalDuplication
5.2-5 NumericalSemigroup
, by (closed) interval 2.1-10 NumericalSemigroupByAffineMap
2.1-7 NumericalSemigroupByAperyList
2.1-3 NumericalSemigroupByFundamentalGaps
2.1-6 NumericalSemigroupByGaps
2.1-5 NumericalSemigroupByGenerators
2.1-1 NumericalSemigroupByInterval
2.1-10 NumericalSemigroupByNuSequence
9.6-4 NumericalSemigroupByOpenInterval
2.1-11 NumericalSemigroupBySmallElements
2.1-4 NumericalSemigroupBySubAdditiveFunction
2.1-2 NumericalSemigroupByTauSequence
9.6-5 NumericalSemigroupDuplication
12.1-2 NumericalSemigroupFromNumericalSemigroupPolynomial
10.1-3 NumericalSemigroupPolynomial
10.1-1 NumericalSemigroupsPlanarSingularityWithFrobeniusNumber
6.2-10 NumericalSemigroupsWithFrobeniusNumber
5.4-3 NumericalSemigroupsWithFrobeniusNumberAndMultiplicity
5.4-2 NumericalSemigroupsWithFrobeniusNumberFG
5.4-1 NumericalSemigroupsWithFrobeniusNumberPC
5.4-4 NumericalSemigroupsWithGenus
5.6-1 NumericalSemigroupsWithGenusPC
5.6-2 NumericalSemigroupsWithMaxPrimitive
5.5-2 NumericalSemigroupsWithMaxPrimitiveAndMultiplicity
5.5-1 NumericalSemigroupsWithMaxPrimitivePC
5.5-3 NumericalSemigroupsWithPseudoFrobeniusNumbers
5.7-3 NumericalSemigroupWithRandomElementsAndFrobenius
B.1-6 NumSgpsUse4ti2
13.1-1 NumSgpsUse4ti2gap
13.1-2 NumSgpsUseNormalize
13.1-3 NumSgpsUseSingular
13.1-4 NumSgpsUseSingularInterface
13.1-5 OmegaPrimality
, for a numerical semigroup 9.4-3 OmegaPrimalityOfAffineSemigroup
11.4-12 OmegaPrimalityOfElementInAffineSemigroup
11.4-11 OmegaPrimalityOfElementInNumericalSemigroup
9.4-1 OmegaPrimalityOfElementListInNumericalSemigroup
9.4-2 OmegaPrimalityOfNumericalSemigroup
9.4-3 OverSemigroups
, of a numerical semigroup 5.3-1 OverSemigroupsNumericalSemigroup
5.3-1 PrimitiveRelationsOfKernelCongruence
11.3-2 ProfileOfNumericalSemigroup
3.2-3 ProjectionOfAGoodSemigroup
12.2-12 ProportionallyModularNumericalSemigroup
2.1-9 PseudoFrobenius
3.1-24 PseudoFrobeniusOfIdealOfNumericalSemigroup
, for ideal of numerical semigroup 7.1-12 PseudoFrobeniusOfNumericalSemigroup
3.1-24 QuotientOfNumericalSemigroup
5.2-3 RandomAffineSemigroup
B.2-2 RandomAffineSemigroupWithGenusAndDimension
B.2-1 RandomFullAffineSemigroup
B.2-3 RandomGoodSemigroupWithFixedMultiplicity
B.3-1 RandomListForNS
B.1-2 RandomListRepresentingSubAdditiveFunction
B.1-5 RandomModularNumericalSemigroup
B.1-3 RandomNumericalSemigroup
B.1-1 RandomNumericalSemigroupWithGenus
B.1-7 RandomProportionallyModularNumericalSemigroup
B.1-4 RatliffRushClosure
7.3-8 RatliffRushClosureOfIdealOfNumericalSemigroup
7.3-8 RatliffRushNumber
7.3-7 RatliffRushNumberOfIdealOfNumericalSemigroup
7.3-7 RClassesOfSetOfFactorizations
9.1-4 ReductionNumber
, for ideals of numerical semigroups 7.3-4 ReductionNumberIdealNumericalSemigroup
7.3-4 RemoveMinimalGeneratorFromAffineSemigroup
11.1-13 RemoveMinimalGeneratorFromNumericalSemigroup
5.1-1 RepresentsGapsOfNumericalSemigroup
2.2-3 RepresentsPeriodicSubAdditiveFunction
A.2-1 RepresentsSmallElementsOfGoodSemigroup
12.2-6 RepresentsSmallElementsOfNumericalSemigroup
2.2-2 RFMatrices
9.1-6 RthElementOfNumericalSemigroup
3.1-11 SaturatedClosure
, for numerical semigroups 8.3-2 SaturatedNumericalSemigroupClosure
8.3-2 SaturatedNumericalSemigroupsWithFrobeniusNumber
8.3-3 SemigroupOfValuesOfCurve_Global
10.2-7 SemigroupOfValuesOfCurve_Local
10.2-6 SemigroupOfValuesOfPlaneCurve
10.2-5 SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity
10.2-1 SetDotNSEngine
14.1-10 ShadedSetOfElementInAffineSemigroup
11.3-8 ShadedSetOfElementInNumericalSemigroup
4.1-7 SimpleForcedIntegersForPseudoFrobenius
5.7-2 SmallElements
, for good ideal 12.5-6 SmallElementsOfGoodIdeal
12.5-6 SmallElementsOfGoodSemigroup
12.2-5 SmallElementsOfIdealOfNumericalSemigroup
7.1-9 SmallElementsOfNumericalSemigroup
3.1-4 SpecialGaps
, for affine semigroup 11.1-10 SpecialGapsOfNumericalSemigroup
3.1-35 StarClosureOfIdealOfNumericalSemigroup
7.3-15 StratifiedAperySetOfGoodSemigroup
12.2-16 SubtractIdealsOfNumericalSemigroup
7.1-23 SumIdealsOfAffinSemigroup
11.5-8 SumIdealsOfNumericalSemigroup
7.1-21 TameDegree
, for affine semigroups 11.4-10 TameDegreeOfAffineSemigroup
11.4-10 TameDegreeOfElementInNumericalSemigroup
9.3-13 TameDegreeOfNumericalSemigroup
9.3-12 TameDegreeOfSetOfFactorizations
9.3-6 TelescopicNumericalSemigroupsWithFrobeniusNumber
6.2-7 TorsionOfAssociatedGradedRingNumericalSemigroup
7.5-3 TraceIdeal
, for numerical semigroups 7.1-32 TraceIdealOfNumericalSemigroup
7.1-32 TracksOfGoodSemigroup
12.5-9 TranslationOfIdealOfAffineSemigroup
11.5-10 TranslationOfIdealOfNumericalSemigroup
7.1-25 TruncatedWilfNumberOfNumericalSemigroup
3.2-2 Type
, for ideal of numerical semigroup 7.1-13 TypeOfNumericalSemigroup
3.1-25 TypeSequence
, for numerical semigroups 7.1-33 TypeSequenceOfNumericalSemigroup
7.1-33 Union
, for ideals of affine semigroup 11.5-11 UnionIdealsOfAffineSemigroup
11.5-11 Weight
, for numerical semigroup 3.1-27 WilfNumber
, for numerical semigroup 3.2-1 WilfNumberOfNumericalSemigroup
3.2-1 WittCoefficients
10.1-10
generated by GAPDoc2HTML