Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 A B C Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter] 

Index

*, for multiple of ideal of affine semigroup 11.5-9
    for multiple of ideal of numerical semigroup 7.1-22
+, for defining ideal of affine semigroup 11.5-1
    for defining ideal of numerical semigroup 7.1-1
    for ideals of affine semigroup 11.5-8
    for ideals of numerical semigroup 7.1-21
    translation of ideal of affine semigroup 11.5-10
    translation of ideal of numerical semigroup 7.1-25
-, for ideals of numerical semigroup 7.1-23
\+, for numerical semigroups 5.2-2
\/, quotient of numerical semigroup 5.2-3
\[ \], for ideals of numerical semigroups 7.1-18
    for numerical semigroups 3.1-8
\in, membership for good ideal 12.5-5
    membership for good semigroup 12.2-1
    membership test for numerical semigroup 2.2-7
    membership test in affine semigroup 11.1-17
    membership test in ideal of affine semigroup 11.5-7
    membership test in ideal of numerical semigroup 7.1-15
\{ \}, for ideals of numerical semigroups 7.1-19
    for numerical semigroups 3.1-9
AbsoluteIrreduciblesOfGoodSemigroup 12.5-8
AddSpecialGapOfAffineSemigroup 11.1-14
AddSpecialGapOfNumericalSemigroup 5.1-2
AdjacentCatenaryDegreeOfSetOfFactorizations 9.3-2
Adjustment 9.2-17
AdjustmentOfNumericalSemigroup 9.2-17
AffineSemigroup, by equations 11.1-2
    by gaps 11.1-5
    by generators 11.1-1
    by inequalities 11.1-3
    by pminequality 11.1-4
AffineSemigroupByEquations 11.1-2
AffineSemigroupByGaps 11.1-5
AffineSemigroupByGenerators 11.1-1
AffineSemigroupByInequalities 11.1-3
AffineSemigroupByPMInequality 11.1-4
AllMinimalRelationsOfNumericalSemigroup 4.1-5
AlmostSymmetricNumericalSemigroupsFromIrreducible 6.3-1
AlmostSymmetricNumericalSemigroupsFromIrreducibleAndGivenType 6.3-2
AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber 6.3-4
AlmostSymmetricNumericalSemigroupsWithFrobeniusNumberAndType 6.3-5
AmalgamationOfNumericalSemigroups 12.1-3
AmbientAffineSemigroupOfIdeal 11.5-5
AmbientGoodSemigroupOfGoodIdeal 12.5-3
AmbientNumericalSemigroupOfIdeal 7.1-5
AnIrreducibleNumericalSemigroupWithFrobeniusNumber 6.1-4
ANumericalSemigroupWithPseudoFrobeniusNumbers 5.7-4
AperyList, for ideals of numerical semigroups with respect to element 7.3-12
    for ideals of numerical semigroups with respect to multiplicity 7.3-13
    for numerical semigroup with respect to element 3.1-15
    for numerical semigroup with respect to integer 3.1-17
    for numerical semigroup with respect to multiplicity 3.1-16
AperyListOfIdealOfNumericalSemigroupWRTElement 7.3-12
AperyListOfNumericalSemigroup 3.1-16
AperyListOfNumericalSemigroupAsGraph 3.1-18
AperyListOfNumericalSemigroupWRTElement 3.1-15
AperyListOfNumericalSemigroupWRTInteger 3.1-17
AperySetOfGoodSemigroup 12.2-15
AperyTable 7.3-14
AperyTableOfNumericalSemigroup 7.3-14
ApplyPatternToIdeal 7.4-5
ApplyPatternToNumericalSemigroup 7.4-6
ArfCharactersOfArfNumericalSemigroup 8.2-3
ArfClosure, of good semigroup 12.4-1
    of numerical semigroup 8.2-2
ArfGoodSemigroupClosure 12.4-1
ArfNumericalSemigroupClosure 8.2-2
ArfNumericalSemigroupsWithFrobeniusNumber 8.2-4
ArfNumericalSemigroupsWithFrobeniusNumberUpTo 8.2-5
ArfNumericalSemigroupsWithGenus 8.2-6
ArfNumericalSemigroupsWithGenusAndFrobeniusNumber 8.2-8
ArfNumericalSemigroupsWithGenusUpTo 8.2-7
ArfOverSemigroups 8.2-10
ArfSpecialGaps 8.2-9
AsAffineSemigroup 11.1-15
AsGluingOfNumericalSemigroups 6.2-1
AsIdealOfNumericalSemigroup 7.4-3
AsNumericalDuplication 5.2-6
AsymptoticRatliffRushNumber 7.3-9
AsymptoticRatliffRushNumberOfIdealOfNumericalSemigroup 7.3-9
BasisOfGroupGivenByEquations 11.1-22
BelongsToAffineSemigroup 11.1-17
BelongsToGoodIdeal 12.5-5
BelongsToGoodSemigroup 12.2-1
BelongsToHomogenizationOfNumericalSemigroup 9.5-1
BelongsToIdealOfAffineSemigroup 11.5-7
BelongsToIdealOfNumericalSemigroup 7.1-15
BelongsToNumericalSemigroup 2.2-7
BettiElements, of affine semigroup 11.3-7
    of numerical semigroup 4.1-3
BettiElementsOfAffineSemigroup 11.3-7
BettiElementsOfNumericalSemigroup 4.1-3
BezoutSequence A.1-1
BinomialIdealOfNumericalSemigroup 4.2-1
BlowUp, for ideals of numerical semigroups 7.3-3
    for numerical semigroups 7.3-5
BlowUpIdealOfNumericalSemigroup 7.3-3
BlowUpOfNumericalSemigroup 7.3-5
BoundForConductorOfImageOfPattern 7.4-4
BuchsbaumNumberOfAssociatedGradedRingNumericalSemigroup 7.5-4
CanonicalBasisOfKernelCongruence 11.3-4
CanonicalIdeal, for numerical semigroups 7.1-29
CanonicalIdealOfGoodSemigroup 12.5-7
CanonicalIdealOfNumericalSemigroup 7.1-29
CartesianProductOfNumericalSemigroups 12.1-4
CatenaryDegree, for a numerical semigroup and one of its elements 9.3-5
    for affine semigroups 11.4-6
    for element in a numerical semigroup 9.3-5
    for numerical semigroups 9.3-7
    for sets of factorizations 9.3-1
CatenaryDegreeOfAffineSemigroup 11.4-6
CatenaryDegreeOfElementInNumericalSemigroup 9.3-5
CatenaryDegreeOfNumericalSemigroup 9.3-7
CatenaryDegreeOfSetOfFactorizations 9.3-1
CeilingOfRational A.1-3
CircuitsOfKernelCongruence 11.3-1
CocycleOfNumericalSemigroupWRTElement 3.1-21
CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber 6.2-3
Conductor, for good semigroups 12.2-2
    for ideal of numerical semigroup 7.1-10
    for numerical Semigroup 3.1-23
ConductorOfGoodSemigroup 12.2-2
ConductorOfIdealOfNumericalSemigroup 7.1-10
ConductorOfNumericalSemigroup 3.1-23
CurveAssociatedToDeltaSequence 10.2-4
CyclotomicExponentSequence 10.1-9
DecomposeIntegralIdealIntoIrreducibles 7.2-2
DecomposeIntoArfIrreducibles 8.2-12
DecomposeIntoIrreducibles, for numerical semigroup 6.1-7
DegreesOffEqualPrimitiveElementsOfNumericalSemigroup 9.3-8
DegreesOfMonotonePrimitiveElementsOfNumericalSemigroup 9.3-10
DegreesOfPrimitiveElementsOfAffineSemigroup 11.3-11
DegreesOfPrimitiveElementsOfNumericalSemigroup 4.1-6
DeltaSequencesWithFrobeniusNumber 10.2-3
DeltaSet, for a numerical semigroup 9.2-11
    for a set of integers 9.2-5
    for an affine semigroup 11.4-5
    for the factorizations in a numerical semigroup of one of its elements 9.2-6
    for the factorizations of an element in a numerical semigroup 9.2-6
DeltaSetListUpToElementWRTNumericalSemigroup 9.2-9
DeltaSetOfAffineSemigroup 11.4-5
DeltaSetOfFactorizationsElementWRTNumericalSemigroup 9.2-6
DeltaSetOfNumericalSemigroup 9.2-11
DeltaSetOfSetOfIntegers 9.2-5
DeltaSetPeriodicityBoundForNumericalSemigroup 9.2-7
DeltaSetPeriodicityStartForNumericalSemigroup 9.2-8
DeltaSetUnionUpToElementWRTNumericalSemigroup 9.2-10
DenumerantFunction 9.1-8
DenumerantIdeal, denumerant ideal of a given number of factorizations in a numerical semigroup 9.1-9
    denumerant ideal of semigroup with respect to a number of factorizations 9.1-9
DenumerantOfElementInNumericalSemigroup 9.1-7
Deserts 3.1-28
DesertsOfNumericalSemigroup 3.1-28
Difference, for ideals of numerical semigroups 7.1-24
    for numerical semigroups 3.1-14
DifferenceOfIdealsOfNumericalSemigroup 7.1-24
DifferenceOfNumericalSemigroups 3.1-14
DilatationOfNumericalSemigroup 5.2-8
DivisorsOfElementInNumericalSemigroup 9.6-3
DotBinaryRelation 14.1-1
DotEliahouGraph 14.1-9
DotFactorizationGraph 14.1-8
DotOverSemigroupsNumericalSemigroup 14.1-6
DotRosalesGraph, for affine semigroup 14.1-7
    for numerical semigroup 14.1-7
DotSplash 14.1-11
DotTreeOfGluingsOfNumericalSemigroup 14.1-5
Elasticity, for affine semigroups 11.4-4
    for numerical semigroups 9.2-4
    for the factorizations in a numerical semigroup of one of its elements 9.2-3
    for the factorizations in an affine semigroup of one of its elements 11.4-3
    for the factorizations of an element in a numerical semigroup 9.2-3
    for the factorizations of an element in an affine semigroup 11.4-3
ElasticityOfAffineSemigroup 11.4-4
ElasticityOfFactorizationsElementWRTAffineSemigroup 11.4-3
ElasticityOfFactorizationsElementWRTNumericalSemigroup 9.2-3
ElasticityOfNumericalSemigroup 9.2-4
ElementNumber_IdealOfNumericalSemigroup 7.1-16
ElementNumber_NumericalSemigroup 3.1-11
ElementsUpTo 3.1-7
EliahouNumber, for numerical semigroup 3.2-2
EliahouSlicesOfNumericalSemigroup 3.2-4
EmbeddingDimension, for numerical semigroup 3.1-3
EmbeddingDimensionOfNumericalSemigroup 3.1-3
EqualCatenaryDegreeOfAffineSemigroup 11.4-7
EqualCatenaryDegreeOfNumericalSemigroup 9.3-9
EqualCatenaryDegreeOfSetOfFactorizations 9.3-3
EquationsOfGroupGeneratedBy 11.1-21
Factorizations 11.4-2
    for a numerical semigroup and one of its elements 9.1-2
    for an element in a numerical semigroup 9.1-2
    for an element in an affine semigroup 11.4-2
FactorizationsElementListWRTNumericalSemigroup 9.1-3
FactorizationsElementWRTNumericalSemigroup 9.1-2
FactorizationsInHomogenizationOfNumericalSemigroup 9.5-2
FactorizationsIntegerWRTList 9.1-1
FactorizationsVectorWRTList 11.4-1
FengRaoDistance 9.7-1
FengRaoNumber 9.7-2
FiniteComplementIdealExtension 11.1-6
FirstElementsOfNumericalSemigroup 3.1-6
ForcedIntegersForPseudoFrobenius 5.7-1
FreeNumericalSemigroupsWithFrobeniusNumber 6.2-5
FrobeniusNumber, for ideal of numerical semigroup 7.1-11
    for numerical semigroup 3.1-22
FrobeniusNumberOfIdealOfNumericalSemigroup 7.1-11
FrobeniusNumberOfNumericalSemigroup 3.1-22
FundamentalGaps, for numerical semigroup 3.1-34
FundamentalGapsOfNumericalSemigroup 3.1-34
Gaps, for affine semigroup 11.1-7
    for numerical semigroup 3.1-26
GapsOfNumericalSemigroup 3.1-26
Generators, for affine semigroup 11.1-11
    for ideal of an affine semigroup 11.5-4
    for ideal of numerical semigroup 7.1-4
    for numerical semigroup 3.1-2
GeneratorsKahlerDifferentials 10.2-9
GeneratorsModule_Global 10.2-8
GeneratorsOfAffineSemigroup 11.1-11
GeneratorsOfIdealOfNumericalSemigroup 7.1-4
GeneratorsOfKernelCongruence 11.3-3
GeneratorsOfNumericalSemigroup 3.1-2
Genus, for affine semigroup 11.1-8
    for good semigroup 12.2-13
    for numerical semigroup 3.1-33
GenusOfGoodSemigroup 12.2-13
GenusOfNumericalSemigroup 3.1-33
GluingOfAffineSemigroups 11.2-1
GoodGeneratingSystemOfGoodIdeal 12.5-2
GoodIdeal 12.5-1
GoodSemigroup 12.1-5
GoodSemigroupByMaximalElements 12.2-10
GoodSemigroupBySmallElements 12.2-7
GraeffePolynomial 10.1-5
GraphAssociatedToElementInNumericalSemigroup 4.1-2
GraverBasis 11.3-5
HasseDiagramOfAperyListOfNumericalSemigroup 14.1-4
HasseDiagramOfBettiElementsOfNumericalSemigroup 14.1-3
HasseDiagramOfNumericalSemigroup 14.1-2
HilbertBasisOfSystemOfHomogeneousEquations 11.1-19
HilbertBasisOfSystemOfHomogeneousInequalities 11.1-20
HilbertFunction 7.3-2
HilbertFunctionOfIdealOfNumericalSemigroup 7.3-1
HilbertSeriesOfNumericalSemigroup 10.1-4
Holes, for numerical semigroup 3.1-31
HolesOfNumericalSemigroup 3.1-31
HomogeneousBettiElementsOfNumericalSemigroup 9.5-3
HomogeneousCatenaryDegreeOfAffineSemigroup 11.4-8
HomogeneousCatenaryDegreeOfNumericalSemigroup 9.5-4
IdealByDivisorClosedSet 7.1-8
IdealOfAffineSemigroup 11.5-1
IdealOfNumericalSemigroup 7.1-1
InductiveNumericalSemigroup 5.2-7
Intersection, for ideals of affine semigroups 11.5-12
    for ideals of numerical semigroups 7.1-27
    for numerical semigroups 5.2-1
IntersectionIdealsOfAffineSemigroup 11.5-12
IntersectionIdealsOfNumericalSemigroup 7.1-27
IntersectionOfNumericalSemigroups 5.2-1
IrreducibleMaximalElementsOfGoodSemigroup 12.2-9
IrreducibleNumericalSemigroupsWithFrobeniusNumber 6.1-5
IrreducibleNumericalSemigroupsWithFrobeniusNumberAndMultiplicity 6.1-6
IrreducibleZComponents 7.2-1
IsACompleteIntersectionNumericalSemigroup 6.2-2
IsAcute, for numerical semigroups 3.1-30
IsAcuteNumericalSemigroup 3.1-30
IsAdditiveNumericalSemigroup 9.2-13
IsAdmissiblePattern 7.4-1
IsAdmittedPatternByIdeal 7.4-7
IsAdmittedPatternByNumericalSemigroup 7.4-8
IsAffineSemigroup 11.1-16
IsAffineSemigroupByEquations 11.1-16
IsAffineSemigroupByGenerators 11.1-16
IsAffineSemigroupByInequalities 11.1-16
IsAlmostCanonicalIdeal 7.1-31
IsAlmostSymmetric 6.3-3
IsAlmostSymmetricNumericalSemigroup 6.3-3
IsAperyListOfNumericalSemigroup 2.2-4
IsAperySetAlphaRectangular 6.2-13
IsAperySetBetaRectangular 6.2-12
IsAperySetGammaRectangular 6.2-11
IsArf 8.2-1
IsArfIrreducible 8.2-11
IsArfNumericalSemigroup 8.2-1
IsBezoutSequence A.1-2
IsCanonicalIdeal 7.1-30
IsCanonicalIdealOfNumericalSemigroup 7.1-30
IsComplementOfIntegralIdeal 7.1-7
IsCompleteIntersection 6.2-2
IsCyclotomicNumericalSemigroup 10.1-8
IsCyclotomicPolynomial 10.1-6
IsDeltaSequence 10.2-2
IsFree 6.2-4
IsFreeNumericalSemigroup 6.2-4
IsFull 11.1-18
IsFullAffineSemigroup 11.1-18
IsGeneralizedAlmostSymmetric 6.4-4
IsGeneralizedGorenstein 6.4-1
IsGeneric, for affine semigroups 11.3-9
    for numerical semigroups 4.3-2
IsGenericAffineSemigroup 11.3-9
IsGenericNumericalSemigroup 4.3-2
IsGoodSemigroup 12.1-1
IsGradedAssociatedRingNumericalSemigroupBuchsbaum 7.5-2
IsGradedAssociatedRingNumericalSemigroupCI 7.5-6
IsGradedAssociatedRingNumericalSemigroupCM 7.5-1
IsGradedAssociatedRingNumericalSemigroupGorenstein 7.5-5
IsHomogeneousNumericalSemigroup 9.8-3
IsIdealOfAffineSemigroup 11.5-2
IsIdealOfNumericalSemigroup 7.1-2
IsIntegral, for ideal of numerical semigroup 7.1-6
    for ideals of affine semigroups 11.5-6
IsIntegralIdealOfAffineSemigroup 11.5-6
IsIntegralIdealOfNumericalSemigroup 7.1-6
IsIrreducible, for numerical semigroups 6.1-1
IsIrreducibleNumericalSemigroup 6.1-1
IsKroneckerPolynomial 10.1-7
IsListOfIntegersNS A.2-2
IsLocal, for good semigroups 12.2-4
IsMED 8.1-1
IsMEDNumericalSemigroup 8.1-1
IsMinimalRelationOfNumericalSemigroup 4.1-4
IsModularNumericalSemigroup 2.2-1
IsMonomialNumericalSemigroup 10.2-10
IsMpure 9.8-2
IsMpureNumericalSemigroup 9.8-2
IsNearlyGorenstein 6.4-2
IsNumericalSemigroup 2.2-1
IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity 6.2-9
IsNumericalSemigroupByAperyList 2.2-1
IsNumericalSemigroupByFundamentalGaps 2.2-1
IsNumericalSemigroupByGaps 2.2-1
IsNumericalSemigroupByGenerators 2.2-1
IsNumericalSemigroupByInterval 2.2-1
IsNumericalSemigroupByOpenInterval 2.2-1
IsNumericalSemigroupBySmallElements 2.2-1
IsNumericalSemigroupBySubAdditiveFunction 2.2-1
IsNumericalSemigroupPolynomial 10.1-2
IsOrdinary, for numerical semigroups 3.1-29
IsOrdinaryNumericalSemigroup 3.1-29
IsProportionallyModularNumericalSemigroup 2.2-1
IsPseudoSymmetric, for numerical semigroups 6.1-3
IsPseudoSymmetricNumericalSemigroup 6.1-3
IsPure 9.8-1
IsPureNumericalSemigroup 9.8-1
IsSaturated 8.3-1
IsSaturatedNumericalSemigroup 8.3-1
IsSelfReciprocalUnivariatePolynomial 10.1-11
IsStronglyAdmissiblePattern 7.4-2
IsSubsemigroupOfNumericalSemigroup 2.2-5
IsSubset 2.2-6
IsSuperSymmetricNumericalSemigroup 9.8-4
IsSymmetric, for good semigroups 12.3-1
    for numerical semigroups 6.1-2
IsSymmetricGoodSemigroup 12.3-1
IsSymmetricNumericalSemigroup 6.1-2
IsTelescopic 6.2-6
IsTelescopicNumericalSemigroup 6.2-6
IsUniquelyPresented, for affine semigroups 11.3-10
    for numerical semigroups 4.3-1
IsUniquelyPresentedAffineSemigroup 11.3-10
IsUniquelyPresentedNumericalSemigroup 4.3-1
IsUniversallyFree 6.2-8
IsUniversallyFreeNumericalSemigroup 6.2-8
Iterator, for ideals of numerical semigroups 7.1-20
    for numerical semigroups 3.1-13
KunzCoordinates, for a numerical semigroup and (optionally) an integer 3.1-19
KunzCoordinatesOfNumericalSemigroup 3.1-19
KunzPolytope 3.1-20
LatticePathAssociatedToNumericalSemigroup 3.1-32
LegendrianGenericNumericalSemigroup 10.3-1
Length, for good semigroup 12.2-14
    for numerical semigroup 3.1-5
LengthOfGoodSemigroup 12.2-14
LengthsOfFactorizationsElementWRTNumericalSemigroup 9.2-2
LengthsOfFactorizationsIntegerWRTList 9.2-1
LipmanSemigroup 7.3-6
LShapes 9.1-5
LShapesOfNumericalSemigroup 9.1-5
MaximalDenumerant 9.2-16
    for a numerical semigroup and one of its elements 9.2-14
    for element in numerical semigroup 9.2-14
MaximalDenumerantOfElementInNumericalSemigroup 9.2-14
MaximalDenumerantOfNumericalSemigroup 9.2-16
MaximalDenumerantOfSetOfFactorizations 9.2-15
MaximalElementsOfGoodSemigroup 12.2-8
MaximalIdeal, for affine semigroups 11.5-13
    for numerical semigroups 7.1-28
MaximalIdealOfNumericalSemigroup 7.1-28
MaximumDegree 9.2-12
MaximumDegreeOfElementWRTNumericalSemigroup 9.2-12
MEDClosure 8.1-2
MEDNumericalSemigroupClosure 8.1-2
MicroInvariants 7.3-11
MicroInvariantsOfNumericalSemigroup 7.3-11
MinimalArfGeneratingSystemOfArfNumericalSemigroup 8.2-3
MinimalGeneratingSystem, for affine semigroup 11.1-12
    for ideal of numerical semigroup 7.1-3
    for numerical semigroup 3.1-2
MinimalGeneratingSystemOfIdealOfNumericalSemigroup 7.1-3
MinimalGeneratingSystemOfNumericalSemigroup 3.1-2
MinimalGenerators, for affine semigroup 11.1-12
    for ideal of an affine semigroup 11.5-3
    for ideal of numerical semigroup 7.1-3
    for numerical semigroup 3.1-2
MinimalGoodGeneratingSystemOfGoodIdeal 12.5-4
MinimalGoodGeneratingSystemOfGoodSemigroup 12.2-11
MinimalGoodGenerators 12.2-11
MinimalMEDGeneratingSystemOfMEDNumericalSemigroup 8.1-3
MinimalPresentation, for affine semigroup 11.3-6
    for numerical semigroups 4.1-1
MinimalPresentationOfAffineSemigroup 11.3-6
MinimalPresentationOfNumericalSemigroup 4.1-1
Minimum, minimum of ideal of numerical semigroup 7.1-14
ModularNumericalSemigroup 2.1-8
MoebiusFunction 9.6-2
MoebiusFunctionAssociatedToNumericalSemigroup 9.6-1
MonotoneCatenaryDegreeOfAffineSemigroup 11.4-9
MonotoneCatenaryDegreeOfNumericalSemigroup 9.3-11
MonotoneCatenaryDegreeOfSetOfFactorizations 9.3-4
MultipleOfIdealOfAffineSemigroup 11.5-9
MultipleOfIdealOfNumericalSemigroup 7.1-22
MultipleOfNumericalSemigroup 5.2-4
Multiplicity, for good semigroups 12.2-3
    for numerical semigroup 3.1-1
MultiplicityOfNumericalSemigroup 3.1-1
MultiplicitySequence 7.3-10
MultiplicitySequenceOfNumericalSemigroup 7.3-10
NearlyGorensteinVectors 6.4-3
NextElementOfNumericalSemigroup 3.1-10
NumberElement_IdealOfNumericalSemigroup 7.1-17
NumberElement_NumericalSemigroup 3.1-12
NumericalDuplication 5.2-5
NumericalSemigroup, by (closed) interval 2.1-10
    by affine map 2.1-7
    by Apery list 2.1-3
    by fundamental gaps 2.1-6
    by gaps 2.1-5
    by generators 2.1-1
    by modular condition 2.1-8
    by open interval 2.1-11
    by proportionally modular condition 2.1-9
    by small elements 2.1-4
    by subadditive function 2.1-2
NumericalSemigroupByAffineMap 2.1-7
NumericalSemigroupByAperyList 2.1-3
NumericalSemigroupByFundamentalGaps 2.1-6
NumericalSemigroupByGaps 2.1-5
NumericalSemigroupByGenerators 2.1-1
NumericalSemigroupByInterval 2.1-10
NumericalSemigroupByNuSequence 9.6-4
NumericalSemigroupByOpenInterval 2.1-11
NumericalSemigroupBySmallElements 2.1-4
NumericalSemigroupBySubAdditiveFunction 2.1-2
NumericalSemigroupByTauSequence 9.6-5
NumericalSemigroupDuplication 12.1-2
NumericalSemigroupFromNumericalSemigroupPolynomial 10.1-3
NumericalSemigroupPolynomial 10.1-1
NumericalSemigroupsPlanarSingularityWithFrobeniusNumber 6.2-10
NumericalSemigroupsWithFrobeniusNumber 5.4-3
NumericalSemigroupsWithFrobeniusNumberAndMultiplicity 5.4-2
NumericalSemigroupsWithFrobeniusNumberFG 5.4-1
NumericalSemigroupsWithFrobeniusNumberPC 5.4-4
NumericalSemigroupsWithGenus 5.6-1
NumericalSemigroupsWithGenusPC 5.6-2
NumericalSemigroupsWithMaxPrimitive 5.5-2
NumericalSemigroupsWithMaxPrimitiveAndMultiplicity 5.5-1
NumericalSemigroupsWithMaxPrimitivePC 5.5-3
NumericalSemigroupsWithPseudoFrobeniusNumbers 5.7-3
NumericalSemigroupWithRandomElementsAndFrobenius B.1-6
NumSgpsUse4ti2 13.1-1
NumSgpsUse4ti2gap 13.1-2
NumSgpsUseNormalize 13.1-3
NumSgpsUseSingular 13.1-4
NumSgpsUseSingularInterface 13.1-5
OmegaPrimality, for a numerical semigroup 9.4-3
    for a numerical semigroup and one of its elements 9.4-1
    for an affine semigroup 11.4-12
    for an affine semigroup and one of its elements 11.4-11
    for an element in a numerical semigroup 9.4-1
    for an element in an affine semigroup 11.4-11
OmegaPrimalityOfAffineSemigroup 11.4-12
OmegaPrimalityOfElementInAffineSemigroup 11.4-11
OmegaPrimalityOfElementInNumericalSemigroup 9.4-1
OmegaPrimalityOfElementListInNumericalSemigroup 9.4-2
OmegaPrimalityOfNumericalSemigroup 9.4-3
OverSemigroups, of a numerical semigroup 5.3-1
OverSemigroupsNumericalSemigroup 5.3-1
PrimitiveRelationsOfKernelCongruence 11.3-2
ProfileOfNumericalSemigroup 3.2-3
ProjectionOfAGoodSemigroup 12.2-12
ProportionallyModularNumericalSemigroup 2.1-9
PseudoFrobenius 3.1-24
    for affine semigroup 11.1-9
    for ideal of numerical semigroup 7.1-12
PseudoFrobeniusOfIdealOfNumericalSemigroup, for ideal of numerical semigroup 7.1-12
PseudoFrobeniusOfNumericalSemigroup 3.1-24
QuotientOfNumericalSemigroup 5.2-3
RandomAffineSemigroup B.2-2
RandomAffineSemigroupWithGenusAndDimension B.2-1
RandomFullAffineSemigroup B.2-3
RandomGoodSemigroupWithFixedMultiplicity B.3-1
RandomListForNS B.1-2
RandomListRepresentingSubAdditiveFunction B.1-5
RandomModularNumericalSemigroup B.1-3
RandomNumericalSemigroup B.1-1
RandomNumericalSemigroupWithGenus B.1-7
RandomProportionallyModularNumericalSemigroup B.1-4
RatliffRushClosure 7.3-8
RatliffRushClosureOfIdealOfNumericalSemigroup 7.3-8
RatliffRushNumber 7.3-7
RatliffRushNumberOfIdealOfNumericalSemigroup 7.3-7
RClassesOfSetOfFactorizations 9.1-4
ReductionNumber, for ideals of numerical semigroups 7.3-4
ReductionNumberIdealNumericalSemigroup 7.3-4
RemoveMinimalGeneratorFromAffineSemigroup 11.1-13
RemoveMinimalGeneratorFromNumericalSemigroup 5.1-1
RepresentsGapsOfNumericalSemigroup 2.2-3
RepresentsPeriodicSubAdditiveFunction A.2-1
RepresentsSmallElementsOfGoodSemigroup 12.2-6
RepresentsSmallElementsOfNumericalSemigroup 2.2-2
RFMatrices 9.1-6
RthElementOfNumericalSemigroup 3.1-11
SaturatedClosure, for numerical semigroups 8.3-2
SaturatedNumericalSemigroupClosure 8.3-2
SaturatedNumericalSemigroupsWithFrobeniusNumber 8.3-3
SemigroupOfValuesOfCurve_Global 10.2-7
SemigroupOfValuesOfCurve_Local 10.2-6
SemigroupOfValuesOfPlaneCurve 10.2-5
SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity 10.2-1
SetDotNSEngine 14.1-10
ShadedSetOfElementInAffineSemigroup 11.3-8
ShadedSetOfElementInNumericalSemigroup 4.1-7
SimpleForcedIntegersForPseudoFrobenius 5.7-2
SmallElements, for good ideal 12.5-6
    for good semigroup 12.2-5
    for ideal of numerical semigroup 7.1-9
    for numerical semigroup 3.1-4
SmallElementsOfGoodIdeal 12.5-6
SmallElementsOfGoodSemigroup 12.2-5
SmallElementsOfIdealOfNumericalSemigroup 7.1-9
SmallElementsOfNumericalSemigroup 3.1-4
SpecialGaps, for affine semigroup 11.1-10
    for numerical semigroup 3.1-35
SpecialGapsOfNumericalSemigroup 3.1-35
StarClosureOfIdealOfNumericalSemigroup 7.3-15
StratifiedAperySetOfGoodSemigroup 12.2-16
SubtractIdealsOfNumericalSemigroup 7.1-23
SumIdealsOfAffinSemigroup 11.5-8
SumIdealsOfNumericalSemigroup 7.1-21
TameDegree, for affine semigroups 11.4-10
    for element in numerical semigroups 9.3-13
    for numerical semigroups 9.3-12
    for numerical semigroups and one of its elements 9.3-13
    for sets of factorizations 9.3-6
TameDegreeOfAffineSemigroup 11.4-10
TameDegreeOfElementInNumericalSemigroup 9.3-13
TameDegreeOfNumericalSemigroup 9.3-12
TameDegreeOfSetOfFactorizations 9.3-6
TelescopicNumericalSemigroupsWithFrobeniusNumber 6.2-7
TorsionOfAssociatedGradedRingNumericalSemigroup 7.5-3
TraceIdeal, for numerical semigroups 7.1-32
TraceIdealOfNumericalSemigroup 7.1-32
TracksOfGoodSemigroup 12.5-9
TranslationOfIdealOfAffineSemigroup 11.5-10
TranslationOfIdealOfNumericalSemigroup 7.1-25
TruncatedWilfNumberOfNumericalSemigroup 3.2-2
Type, for ideal of numerical semigroup 7.1-13
    of a numerical semigroup 3.1-25
TypeOfNumericalSemigroup 3.1-25
TypeSequence, for numerical semigroups 7.1-33
TypeSequenceOfNumericalSemigroup 7.1-33
Union, for ideals of affine semigroup 11.5-11
    for ideals of numerical semigroup 7.1-26
UnionIdealsOfAffineSemigroup 11.5-11
Weight, for numerical semigroup 3.1-27
WilfNumber, for numerical semigroup 3.2-1
WilfNumberOfNumericalSemigroup 3.2-1
WittCoefficients 10.1-10

 [Top of Book]  [Contents]   [Previous Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 A B C Bib Ind

generated by GAPDoc2HTML