In this chapter we give some examples of computing with the Package Nilmat.
gap> g1 := MaximalAbsolutelyIrreducibleNilpotentMatGroup(52,3,3); <matrix group with 7 generators>
The group g1
is a subgroup of GL(52,33) generated by 7 matrices.
gap> g2 := MaximalAbsolutelyIrreducibleNilpotentMatGroup(180,11,2); <matrix group with 41 generators>
The group g2
is a subgroup of GL(180,112) generated by 41 matrices.
gap> MaximalAbsolutelyIrreducibleNilpotentMatGroup(210,2,10); fail
In this third example, absolutely irreducible nilpotent subgroups of GL(210,210) do not exist, because the degree of the matrices and the field size are both even.
gap> g3 := MonomialNilpotentMatGroup(450); <matrix group with 24 generators>
Here g3
is a monomial nilpotent subgroup of GL(450,Q).
gap> g4 := ReducibleNilpotentReducibleMatGroup(3,180,11,2); <matrix group with 82 generators>
Here g4 < GL(540,112) is the Kronecker product of a
unipotent subgroup of GL(3,112) and the group g2
.
gap> g5 := ReducibleNilpotentMatGroup(7,36); <matrix group with 72 generators>
Here g5 < GL(252, Q) is a reducible nilpotent group constructed
as the Kronecker product of a unipotent subgroup of GL(7,Q) with
MonomialNilpotentMatGroup(36)
.
We now illustrate use of the functions
IsNilpotentMatGroup
,
SylowSubgroupsOfNilpotentFFMatGroup
,
IsFiniteNilpotentMatGroup
,
SizeOfNilpotentMatGroup
, and
IsCompletelyReducibleNilpotentMatGroup
.
gap> IsNilpotentMatGroup(GL(200,Integers)); false gap> IsNilpotentMatGroup(GL(150,11^3)); false gap> g6 := MaximalAbsolutelyIrreducibleNilpotentMatGroup(127,2,7); <matrix group with 3 generators> gap> IsNilpotentMatGroup(g6); true gap> g7 := MonomialNilpotentMatGroup(350); <matrix group with 6 generators> gap> IsNilpotentMatGroup(g7); true gap> IsFiniteNilpotentMatGroup(g7); true gap> g8 := ReducibleNilpotentMatGroup(6,35); <matrix group with 5 generators> gap> IsNilpotentMatGroup(g8); true gap> IsFiniteNilpotentMatGroup(g8); false gap> g9 := ReducibleNilpotentMatGroup(2,36,5,2); <matrix group with 21 generators> gap> SylowSubgroupsOfNilpotentFFMatGroup(g9); [ <matrix group with 5 generators>, <matrix group with 6 generators>, <matrix group with 1 generators> ] gap> IsCompletelyReducibleNilpotentMatGroup(g9); false gap> g10 := MaximalAbsolutelyIrreducibleNilpotentMatGroup(24,5,2); <matrix group with 17 generators> gap> SizeOfNilpotentMatGroup(g10); 173946175488 gap> IsCompletelyReducibleNilpotentMatGroup(g10); true gap> g11 := MonomialNilpotentMatGroup(96); <matrix group with 31 generators> gap> SizeOfNilpotentMatGroup(g11); 6442450944 gap> IsCompletelyReducibleNilpotentMatGroup(g11); true
This section gives examples of applying the functions from the Nilmat library of primitive nilpotent subgroups of GL(n,q).
gap> L0 := NilpotentPrimitiveMatGroups(2,3,1); [ Group([ [ [ 0*Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0 ] ] ]), Group([ [ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ], [ [ Z(3), Z(3)^0 ], [ Z(3), Z(3) ] ], [ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3) ] ] ]), Group([ [ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ], [ [ 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3) ] ], [ [ Z(3), Z(3) ], [ Z(3), Z(3)^0 ] ] ]) ] gap> SizesOfNilpotentPrimitiveMatGroups(2,3,1); [ 8, 16, 8 ] gap> List(L0,Size); [ 8, 16, 8 ] gap> L1 := NilpotentPrimitiveMatGroups(2,2,10);; gap> Length(L1); 40 gap> Size(L1[38]); 209715 gap> s := SizesOfNilpotentPrimitiveMatGroups(2,2,10); [ 5, 15, 25, 41, 55, 75, 123, 155, 165, 205, 275, 451, 465, 615, 775, 825, 1025, 1271, 1353, 1705, 2255, 2325, 3075, 3813, 5115, 6355, 6765, 8525, 11275, 13981, 19065, 25575, 31775, 33825, 41943, 69905, 95325, 209715, 349525, 1048575 ] gap> L2 := NilpotentPrimitiveMatGroups(55,3,1);; gap> Length(L2); 114 gap> L3 := NilpotentPrimitiveMatGroups(6,3,3);; gap> Length(L3); 110 gap> L4 := NilpotentPrimitiveMatGroups(22,11,1);; gap> Length(L4); 1002
The lists L1
and L2
contain only abelian groups, while L3
and
L4
contain non-abelian nilpotent groups.
[Up] [Previous] [Next] [Index]
Nilmat manual