Goto Chapter:
Top
1
2
3
4
5
6
Bib
Ind
[Top of Book]
[Contents]
[Next Chapter]
[MathJax off]
lpres
Nilpotent Quotients of L-Presented Groups
1.1.1
12 July 2024
René Hartung
Contents
1
The
lpres
package
1.1
Introduction
2
An Introduction to L-presented groups
2.1
Definitions
2.2
Creating an L-presented group
2.2-1 LPresentedGroup
2.2-2 ExamplesOfLPresentations
2.2-3 FreeEngelGroup
2.2-4 FreeBurnsideGroup
2.2-5 FreeNilpotentGroup
2.2-6 GeneralizedFabrykowskiGuptaLpGroup
2.2-7 LamplighterGroup
2.2-8 EmbeddingOfIASubgroup
2.3
The underlying free group
2.3-1 FreeGroupOfLpGroup
2.3-2 FreeGeneratorsOfLpGroup
2.3-3 GeneratorsOfGroup
2.3-4 UnderlyingElement
2.3-5 ElementOfLpGroup
2.4
Accessing an L-presentation
2.4-1 FixedRelatorsOfLpGroup
2.4-2 IteratedRelatorsOfLpGroup
2.4-3 EndomorphismsOfLpGroup
2.5
Attributes and properties of L-presented groups
2.5-1 UnderlyingAscendingLPresentation
2.5-2 UnderlyingInvariantLPresentation
2.5-3 IsAscendingLPresentation
2.5-4 IsInvariantLPresentation
2.5-5 EmbeddingOfAscendingSubgroup
2.6
Methods for L-presented groups
2.6-1 EpimorphismFromFpGroup
2.6-2 SplitExtensionByAutomorphismsLpGroup
2.6-3 AsLpGroup
2.6-4 IsomorphismLpGroup
3
Nilpotent Quotients of L-presented groups
3.1
New methods for L-presented groups
3.1-1 NilpotentQuotient
3.1-2 LargestNilpotentQuotient
3.1-3 NqEpimorphismNilpotentQuotient
3.1-4 AbelianInvariants
3.2
A brief description of the algorithm
3.3
Nilpotent Quotient Systems for invariant L-presentations
3.3-1 InitQuotientSystem
3.3-2 ExtendQuotientSystem
3.4
Attributes of L-presented groups related with the nilpotent quotient algorithm
3.4-1 NilpotentQuotientSystem
3.4-2 NilpotentQuotients
3.5
The Info-Class InfoLPRES
3.5-1 InfoLPRES
3.5-2 InfoLPRES_MAX_GENS
4
Subgroups of L-presented groups
4.1
Creating a subgroup of an L-presented group
4.1-1 Subgroup
4.1-2 SubgroupLpGroupByCosetTable
4.2
Computing the index of finite-index subgroups
4.2-1 IndexInWholeGroup
4.2-2 Index
4.2-3 CosetTableInWholeGroup
4.3
Technical details
4.3-1 LPRES_TCSTART
4.3-2 LPRES_CosetEnumerator
5
Approximating the Schur multiplier
5.1
Methods
5.1-1 GeneratingSetOfMultiplier
5.1-2 FiniteRankSchurMultiplier
5.1-3 EndomorphismsOfFRSchurMultiplier
5.1-4 EpimorphismCoveringGroups
5.1-5 EpimorphismFiniteRankSchurMultiplier
5.1-6 ImageInFiniteRankSchurMultiplier
6
On a parallel nilpotent quotient algorithm
6.1
Usage
References
Index
[Top of Book]
[Contents]
[Next Chapter]
Goto Chapter:
Top
1
2
3
4
5
6
Bib
Ind
generated by
GAPDoc2HTML