Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[All84] Alltop, W. O., A method for extending binary linear codes, IEEE Trans. Inform. Theory, 30 (6) (1984), 871-872.

[BM06] Bazzi, L. and Mitter, S. K., Some Randomized Code Constructions From Group Actions, IEEE Trans. Inform. Theory, 52 (7) (2006), 3210-3219.

[Bro98] Brouwer, A. E. (Pless, V. S. and Huffman, W. C., Eds.), Bounds on the Size of Linear Codes, in Handbook of Coding Theory, Elsevier, Amsterdam (1998), 295-461.

[Bro06] Brouwer, A. E., Bounds on the minimum distance of linear codes (1997-2006), https://www.codetables.de/.

[Che69] Chen, C. L., Some Results on Algebraically Structured Error-Correcting Codes, Doctoral Dissertation, University of Hawaii, Honolulu, USA (1969).

[Gal62] Gallager, R., Low-Density Parity-Check Codes, IRE Trans. Inf. Theor., IT-8 (1962), 21-28.

[Gao03] Gao, S. (Bhargava, V., Poor, H. V., Tarokh, V. and Yoon, S., Eds.), A New Algorithm for Decoding Reed-Solomon Codes, in Communications, Information and Network Security, Springer, Boston, MA (2003), 55-68.

[GDT91] Gabidulin, E., Davydov, A. and Tombak, L., Linear codes with covering radius 2 and other new covering codes, IEEE Trans. Inform. Theory, 37 (1) (1991), 219-224.

[GS85] Graham, R. and Sloane, N., On the Covering Radius of Codes, IEEE Trans. Inform. Theory, 31 (3) (1985), 385-401.

[Han00] Hansen, J. P. (Buchmann, J., Høholdt, T., Stichtenoth, H. and Tapia-Recillas, H., Eds.), Toric Surfaces and Error-correcting Codes, in Coding Theory, Cryptography and Related Areas, Springer, Berlin Heidelberg (2000), 132-142.

[Hel72] Helgert, H. J., Srivastava Codes, IEEE Trans. Inform. Theory, 18 (2) (1972), 292-297.

[HHKK07] Harada, M., Holzmann, W., Kharaghani, H. and Khorvash, M., Extremal Ternary Self-Dual Codes Constructed from Negacirculant Matrices, Graphs Combin., 23 (4) (2007), 401-417.

[HP03] Huffman, W. C. and Pless, V., Fundamentals of error-correcting codes, Cambridge University Press (2003).

[JH04] Justesen, J. and Høholdt, T., A course in Error-Correcting Codes, European Mathematical Society, EMS Textbooks in Mathematics (2004).

[Joy04] Joyner, D., Toric codes over finite fields, Appl. Algebra Engrg. Comm. Comput., 15 (1) (2004), 63-79.

[Leo82] Leon, J. S., Computing automorphism groups of error-correcting codes, IEEE Trans. Inform. Theory, 28 (3) (1982), 496-511.

[Leo88] Leon, J. S., A probabilistic algorithm for computing minimum weights of large error-correcting codes, IEEE Trans. Inform. Theory, 34 (5) (1988), 1354-1359.

[Leo91] Leon, J. S., Permutation group algorithms based on partitions, I: Theory and algorithms, J. Symbolic Comput., 12 (4-5) (1991), 533-583.

[MS83] MacWilliams, F. J. and Sloane, N. J. A., The theory of error-correcting codes, North-Holland, North-Holland Mathematical Library, 16, Amsterdam (1983).

[SRC72] Sloane, N., Reddy, S. and Chen, C., New binary codes, IEEE Trans. Inform. Theory, 18 (4) (1972), 503-510.

[Sti93] Stichtenoth, H., Algebraic Function Fields and Codes, Springer, Graduate Texts in Mathematics, 254 (1993).

[TSS+04] Tanner, R., Sridhara, D., Sridharan, A., Fuja, T. and Costello Jr., D., LDPC Block and Convolutional Codes Based on Circulant Matrices, IEEE Trans. Inform. Theory, 50 (12) (2004), 2966-2984.

[vzGG03] von zur Gathen, J. and Gerhard, J., Modern computer algebra, Cambridge University Press (2003).

[Zim96] Zimmermann, K. H., Integral Hecke Modules, Integral Generalized Reed-Muller Codes, and Linear Codes, Technische Universität Hamburg-Harburg (3-96), Hamburg, Germany (1996).

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind

generated by GAPDoc2HTML