Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

6 Automorphisms of Groupoids
 6.1 Automorphisms of single piece groupoids
 6.2 Matrix representations of groupoids
 6.3 Groupoid actions

6 Automorphisms of Groupoids

In this chapter we consider automorphisms of single piece groupoids; then homogeneous discrete groupoids; and finally homogeneous groupoids. We also consider matrix representations and groupooid actions.

6.1 Automorphisms of single piece groupoids

6.1-1 GroupoidAutomorphismByObjectPerm
‣ GroupoidAutomorphismByObjectPerm( gpd, imobs )( operation )
‣ GroupoidAutomorphismByGroupAuto( gpd, gpiso )( operation )
‣ GroupoidAutomorphismByNtuple( gpd, imrays )( operation )
‣ GroupoidAutomorphismByRayShifts( gpd, imrays )( operation )

We first describe automorphisms of a groupoid G where G is the direct product of a group g and a complete digraph with n objects.. The automorphism group is generated by three types of automorphism:


gap> perm1 := [-13,-12,-14];;
gap> aut1 := GroupoidAutomorphismByObjectPerm( Ha4, perm1 );; 
gap> Display( aut1 ); 
homomorphism to single piece groupoid: Ha4 -> Ha4
root group homomorphism:
(1,2,3) -> (1,2,3)
(2,3,4) -> (2,3,4)
object map: [ -14, -13, -12 ] -> [ -13, -12, -14 ]
ray images: [ (), (), () ]
gap> d := Arrow( Ha4, (1,3,4), -12, -13 ); 
[(1,3,4) : -12 -> -13]
gap> d1 := ImageElm( aut1, d ); 
[(1,3,4) : -14 -> -12]
gap> gensa4 := GeneratorsOfGroup( a4 );; 
gap> alpha2 := GroupHomomorphismByImages( a4, a4, gensa4, [(2,3,4), (1,3,4)] );; 
gap> aut2 := GroupoidAutomorphismByGroupAuto( Ha4, alpha2 );; 
gap> Display( aut2 ); 
homomorphism to single piece groupoid: Ha4 -> Ha4
root group homomorphism:
(1,2,3) -> (2,3,4)
(2,3,4) -> (1,3,4)
object map: [ -14, -13, -12 ] -> [ -14, -13, -12 ]
ray images: [ (), (), () ]
gap> d2 := ImageElm( aut2, d1 );
[(1,2,4) : -14 -> -12]
gap> L3 := [(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)];; 
gap> aut3 := GroupoidAutomorphismByNtuple( Ha4, L3 );; 
gap> Display( aut3 ); 
homomorphism to single piece groupoid: Ha4 -> Ha4
root group homomorphism:
(1,2,3) -> (1,4,2)
(2,3,4) -> (1,4,3)
object map: [ -14, -13, -12 ] -> [ -14, -13, -12 ]
ray images: [ (), (1,4)(2,3), (1,3)(2,4) ]
gap> d3 := ImageElm( aut3, d2 );
[(2,3,4) : -14 -> -12]
gap> L4 := [(), (1,3,2), (2,4,3)];; 
gap> aut4 := GroupoidAutomorphismByRayShifts( Ha4, L4 );; 
gap> Display( aut4 ); 
homomorphism to single piece groupoid: Ha4 -> Ha4
root group homomorphism:
(1,2,3) -> (1,2,3)
(2,3,4) -> (2,3,4)
object map: [ -14, -13, -12 ] -> [ -14, -13, -12 ]
ray images: [ (), (1,3,2), (2,4,3) ]
gap> d4 := ImageElm( aut4, d3 );
[() : -14 -> -12]
gap> h4 := Arrow( Ha4, (2,3,4), -12, -13 );; 
gap> aut1234 := aut1*aut2*aut3*aut4;; 
gap> Display( aut1234 ); 
homomorphism to single piece groupoid: Ha4 -> Ha4
root group homomorphism:
(1,2,3) -> (1,4,3)
(2,3,4) -> (1,2,3)
object map: [ -14, -13, -12 ] -> [ -13, -12, -14 ]
ray images: [ (), (2,3,4), (1,3,4) ]
gap> d4  = ImageElm( aut1234, d );
true
gap> inv1234 := InverseGeneralMapping( aut1234 );; 
gap> Display( inv1234 ); 
homomorphism to single piece groupoid: Ha4 -> Ha4
root group homomorphism:
(1,2,3) -> (1,4,3)
(2,3,4) -> (2,4,3)
object map: [ -14, -13, -12 ] -> [ -12, -14, -13 ]
ray images: [ (), (1,3,2), (1,3,4) ]

6.1-2 GroupoidInnerAutomorphism
‣ GroupoidInnerAutomorphism( gpd, arrow )( operation )
‣ GroupoidInnerAutomorphismNormalSubgroupoid( gpd, subgpd, arrow )( operation )

Given an arrow a = (c : p -> q) ∈ G with p ≠ q, the inner automorphism α_a of G by a is the mapping g ↦ g^a where conjugation of arrows is defined in section 4.5. It is easily checked that if L_a = [1,...,1,c^-1,1,...,1,c,1,...,1], with c^-1 in position p and c in position q, then

\alpha_a ~=~ \alpha_{(p,q)} * \alpha_{L_a}.

Similarly, when p=q, then α_a = α_L_a where now L_a = [1,...,1,c,1,...,1], with c in position p.


gap> inn1 := GroupoidInnerAutomorphism( Ha4, h4 );;
gap> Display( inn1 );
homomorphism to single piece groupoid: Ha4 -> Ha4
root group homomorphism:
(1,2,3) -> (1,2,3)
(2,3,4) -> (2,3,4)
object map: [ -14, -13, -12 ] -> [ -14, -12, -13 ]
ray images: [ (), (2,4,3), (2,3,4) ]
gap> d5 := ImageElm( inn1, d4 );
[(2,3,4) : -14 -> -13]

Conjugation may also be applied to certain normal subgroupoids of G. Firstly, let N be the wide subgroupoid of G determined by a normal subgroup n of the root group. Then, provided the group element of a is in n, the inner automorphism by a may be applied to N.


gap> Nk4 := SubgroupoidBySubgroup( Ha4, k4 );;
gap> SetName( Nk4, "Nk4" );
gap> e4 := Arrow( Ha4, (1,2)(3,4), -14, -13 );;
gap> inn2 := GroupoidInnerAutomorphismNormalSubgroupoid( Ha4, Nk4, e4 );;
gap> Display( inn2 );
homomorphism to single piece groupoid: Nk4 -> Nk4
root group homomorphism:
(1,2)(3,4) -> (1,2)(3,4)
(1,3)(2,4) -> (1,3)(2,4)
object map: [ -14, -13, -12 ] -> [ -13, -14, -12 ]
ray images: [ (), (), (1,2)(3,4) ]

Secondly, if H is a homogeneous, discrete subgroupoid of G and if the group element of a is in the common vertex groups, then the inner automorphism may be applied to H.


gap> Ma4 := MaximalDiscreteSubgroupoid( Ha4 );;
gap> SetName( Ma4, "Ma4" );
gap> inn3 := GroupoidInnerAutomorphism( Ha4, Ma4, e4 );;
gap> Display( inn3 );
homogeneous discrete groupoid mapping: [ Ma4 ] -> [ Ma4 ]
images of objects: [ -13, -14, -12 ]
object homomorphisms:
GroupHomomorphismByImages( a4, a4, [ (1,2,3), (2,3,4) ], [ (1,4,2), (1,4,3)  ] )
GroupHomomorphismByImages( a4, a4, [ (1,2,3), (2,3,4) ], [ (1,4,2), (1,4,3)  ] )
GroupHomomorphismByImages( a4, a4, [ (1,2,3), (2,3,4) ], [ (1,2,3), (2,3,4)  ] )

6.1-3 Automorphisms of a groupoid with rays

Let S be a wide subgroupoid with rays of a standard groupoid G.

An automorphism α of the root group H extends to the whole of S with the rays fixed by the automorphism: (r^-1_ihr_j : o_i -> o_j) ↦ (r^-1_i (α h)r_j : o_i -> o_j).

An automorphism of G obtained by permuting the objects may map S to a different subgroupoid. So we construct an isomorphism ι from S to a standard groupoid T, construct α permuting the objects of T, and return ι*α*ι^-1.

For an automorphism by ray shifts we require that the shifts are elements of the root group of S.


gap> ## (1) automorphism by group auto 
gap> a6 := GroupHomomorphismByImages( k4, k4,
>              [ (1,2)(3,4), (1,3)(2,4) ], [ (1,3)(2,4), (1,4)(2,3) ] );;
gap> aut6 := GroupoidAutomorphismByGroupAuto( Kk4, a6 );
groupoid homomorphism : Kk4 -> Kk4
[ [ [(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14], 
      [(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12] ], 
  [ [(1,3)(2,4) : -14 -> -14], [(1,4)(2,3) : -14 -> -14], 
      [(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12] ] ]
gap> a := Arrow( Kk4, (1,3)(2,4), -12, -12 );;
gap> ImageElm( aut6, a );
[(1,4)(2,3) : -12 -> -12]
gap> b := Arrow( Kk4, (1,4,2), -12, -13 );;
gap> ImageElm( aut6, b );
[(1,2,3) : -12 -> -13]
gap> ## (2) automorphism by object perm 
gap> aut7 := GroupoidAutomorphismByObjectPerm( Kk4, [-13,-12,-14] );
groupoid homomorphism : Kk4 -> Kk4
[ [ [(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14], 
      [(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12] ], 
  [ [(1,4)(2,3) : -13 -> -13], [(1,2)(3,4) : -13 -> -13], 
      [(2,3,4) : -13 -> -12], [(1,4,3) : -13 -> -14] ] ]
gap> ImageElm( aut7, a );                                           
[(1,3)(2,4) : -14 -> -14]
gap> ImageElm( aut7, b );                                           
[(1,3)(2,4) : -14 -> -12]
gap> ## (3) automorphism by ray shifts 
gap> aut8 := GroupoidAutomorphismByRayShifts( Kk4,
>                [ (), (1,4)(2,3), (1,3)(2,4) ] );
groupoid homomorphism : Kk4 -> Kk4
[ [ [(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14], 
      [(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12] ], 
  [ [(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14], 
      [(1,2,3) : -14 -> -13], [(1,2)(3,4) : -14 -> -12] ] ]
gap> ImageElm( aut8, a );
[(1,3)(2,4) : -12 -> -12]
gap> ImageElm( aut8, b );
[(1,2,3) : -12 -> -13]
gap> ## (4) combine these three automorphisms 
gap> aut678 := aut6 * aut7 * aut8;
groupoid homomorphism : Kk4 -> Kk4
[ [ [(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14], 
      [(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12] ], 
  [ [(1,2)(3,4) : -13 -> -13], [(1,3)(2,4) : -13 -> -13], 
      [(1,4,3) : -13 -> -12], [(1,3,2) : -13 -> -14] ] ]
gap> ImageElm( aut678, a ); 
[(1,4)(2,3) : -14 -> -14]
gap> ImageElm( aut678, b );
[(1,4)(2,3) : -14 -> -12]
gap> ## (5) conjgation by an arrow
gap> e8 := Arrow( Kk4, (1,3)(2,4), -14, -12 );;
gap> aut9 := GroupoidInnerAutomorphism( Kk4, e8 );
groupoid homomorphism : Kk4 -> Kk4
[ [ [(1,2)(3,4) : -14 -> -14], [(1,3)(2,4) : -14 -> -14], 
      [(1,3,4) : -14 -> -13], [(1,4)(2,3) : -14 -> -12] ], 
  [ [(1,2)(3,4) : -12 -> -12], [(1,3)(2,4) : -12 -> -12], 
      [(1,4,2) : -12 -> -13], [(1,4)(2,3) : -12 -> -14] ] ]

6.1-4 AutomorphismGroupOfGroupoid
‣ AutomorphismGroupOfGroupoid( gpd )( operation )
‣ NiceObjectAutoGroupGroupoid( gpd, aut )( operation )

As above, let G be the direct product of a group g and a complete digraph with n objects. The AutomorphismGroup Aut(G) of G is isomorphic to the quotient of S_n × A × g^n by a subgroup isomorphic to g, where A is the automorphism group of g and S_n is the symmetric group on the n objects. This is one of the main topics in [AW10].

If H is the union of k groupoids, all isomorphic to G, then Aut(H) is isomorphic to S_k ⋉ Aut(G).

The function NiceObjectAutoGroupGroupoid takes a groupoid and a subgroup of its automorphism group and retuns a nice monomorphism from this automorphism group to a pc-group, if one is available. The current implementation is experimental. Note that ImageElm at present only works on generating elements.


gap> AHa4 := AutomorphismGroupOfGroupoid( Ha4 ); 
Aut(Ha4)
gap> Agens := GeneratorsOfGroup( AHa4);; 
gap> Length( Agens );
8
gap> NHa4 := NiceObject( AHa4 );; 
gap> MHa4 := NiceMonomorphism( AHa4 );; 
gap> Size( AHa4 );    ## (3!)x24x(12^2)
20736
gap> SetName( AHa4, "AHa4" ); 
gap> SetName( NHa4, "NHa4" );
gap> ## either of these names may be returned
gap> names := [ "(((A4 x A4 x A4) : C2) : C3) : C2",
>    "(C2 x C2 x C2 x C2 x C2 x C2) : (((C3 x C3 x C3) : C3) : (C2 x C2))" ];;
gap> StructureDescription( NHa4 ) in names;
true
gap> ##  cannot test images of Agens because of random variations 
gap> ##  Now do some tests!
gap> mgi := MappingGeneratorsImages( MHa4 );; 
gap> autgen := mgi[1];;
gap> pcgen := mgi[2];;
gap> ngen := Length( autgen );; 
gap> ForAll( [1..ngen], i -> Order(autgen[i]) = Order(pcgen[i]) ); 
true

6.1-5 Inner automorphisms

The inner automorphism subgroup mathrmInn(G) of the automorphism group of G is the group of inner automorphisms ∧ a : b ↦ b^a for a ∈ G. It is not the case that the map G -> mathrmInn(G), a ↦ ∧ a preserves multiplication. Indeed, when a=(o,g,p), b=(p,h,r) ∈ G with objects p,q,r all distict, then

\wedge(ab) ~=~ (\wedge a)(\wedge b)(\wedge a) ~=~ (\wedge b)(\wedge a)(\wedge b).

(Compare this with the permutation identity (pq)(qr)(pq) = (pr) = (qr)(pq)(qr).) So the map G -> mathrmInn(G) is of type IsMappingWithObjectsByFunction.

In the example we convert the automorphism group AGa4 into a single object groupoid, and then define the inner automorphism map.


gap> AHa40 := Groupoid( AHa4, [0] );
single piece groupoid: < Aut(Ha4), [ 0 ] >
gap> conj := function(a) 
>        return ArrowNC( Ha4, true, GroupoidInnerAutomorphism(Ha4,a), 0, 0 ); 
>    end;; 
gap> inner := MappingWithObjectsByFunction( Ha4, AHa40, conj, [0,0,0] );;
gap> a1 := Arrow( Ha4, (1,2,3), -14, -13 );;
gap> inner1 := ImageElm( inner, a1 );;                        
gap> a2 := Arrow( Ha4, (2,3,4), -13, -12 );;
gap> inner2 := ImageElm( inner, a2 );;       
gap> a3 := a1*a2;                      
[(1,3)(2,4) : -14 -> -12]
gap> inner3 := ImageElm( inner, a3 );  
[groupoid homomorphism : Ha4 -> Ha4
[ [ [(1,2,3) : -14 -> -14], [(2,3,4) : -14 -> -14], [() : -14 -> -13], 
      [() : -14 -> -12] ], 
  [ [(1,3,4) : -12 -> -12], [(1,2,4) : -12 -> -12], [(1,3)(2,4) : -12 -> -13],
      [() : -12 -> -14] ] ] : 0 -> 0]
gap> (inner3 = inner1*inner2*inner1) and (inner3 = inner2*inner1*inner2);
true
true

6.1-6 GroupoidAutomorphismByGroupAutos
‣ GroupoidAutomorphismByGroupAutos( gpd, auts )( operation )

Homogeneous, discrete groupoids are the second type of groupoid for which a method is provided for AutomorphismGroupOfGroupoid. This is used in the XMod package for constructing crossed modules of groupoids. The two types of generating automorphism are GroupoidAutomorphismByGroupAutos, which requires a list of group automorphisms, one for each object group, and GroupoidAutomorphismByObjectPerm, which permutes the objects. So, if the object groups g have automorphism group Aut(g) and there are n objects, the autmorphism group of the groupoid has size n!|Aut(g)|^n.


gap> Dd8 := HomogeneousDiscreteGroupoid( d8, [ -13..-10] ); 
homogeneous, discrete groupoid: < d8, [ -13 .. -10 ] >
gap> aut10 := GroupoidAutomorphismByObjectPerm( Dd8, [-12,-10,-11,-13] ); 
groupoid homomorphism : morphism from a homogeneous discrete groupoid:
[ -13, -12, -11, -10 ] -> [ -12, -10, -11, -13 ]
object homomorphisms:
IdentityMapping( d8 )
IdentityMapping( d8 )
IdentityMapping( d8 )
IdentityMapping( d8 )
gap> gend8 := GeneratorsOfGroup( d8 );; 
gap> g1 := gend8[1];; 
gap> g2 := gend8[2];;
gap> b1 := IdentityMapping( d8 );;
gap> b2 := GroupHomomorphismByImages( d8, d8, gend8, [g1, g2*g1 ] );; 
gap> b3 := GroupHomomorphismByImages( d8, d8, gend8, [g1^g2, g2 ] );; 
gap> b4 := GroupHomomorphismByImages( d8, d8, gend8, [g1^g2, g2^(g1*g2) ] );; 
gap> aut11 := GroupoidAutomorphismByGroupAutos( Dd8, [b1,b2,b3,b4] ); 
groupoid homomorphism : morphism from a homogeneous discrete groupoid:
[ -13, -12, -11, -10 ] -> [ -13, -12, -11, -10 ]
object homomorphisms:
IdentityMapping( d8 )
GroupHomomorphismByImages( d8, d8, [ (5,6,7,8), (5,7) ], 
[ (5,6,7,8), (5,8)(6,7) ] )
GroupHomomorphismByImages( d8, d8, [ (5,6,7,8), (5,7) ], [ (5,8,7,6), (5,7) ] )
GroupHomomorphismByImages( d8, d8, [ (5,6,7,8), (5,7) ], [ (5,8,7,6), (6,8) ] )
gap> ADd8 := AutomorphismGroupOfGroupoid( Dd8 ); 
<group with 4 generators>
gap> Size( ADd8 );    ## 4!*8^4
98304
gap> genADd8 := GeneratorsOfGroup( ADd8 );;
gap> Length( genADd8 ); 
4  
gap> w := GroupoidAutomorphismByGroupAutos( Dd8, [b2,b1,b1,b1] );; 
gap> x := GroupoidAutomorphismByGroupAutos( Dd8, [b3,b1,b1,b1] );; 
gap> y := GroupoidAutomorphismByObjectPerm( Dd8, [ -12, -11, -10, -13 ] );; 
gap> z := GroupoidAutomorphismByObjectPerm( Dd8, [ -12, -13, -11, -10 ] );; 
gap> ok := ForAll( genADd8, a -> a in[ w, x, y, z ] ); 
true
gap> NADd8 := NiceObject( ADd8 );; 
gap> MADd8 := NiceMonomorphism( ADd8 );;
gap> w1 := ImageElm( MADd8, w );; 
gap> x1 := ImageElm( MADd8, x );; 
gap> y1 := ImageElm( MADd8, y );; 
gap> z1 := ImageElm( MADd8, z );; 
gap> u := z*w*y*x*z; 
groupoid homomorphism : morphism from a homogeneous discrete groupoid:
[ -13, -12, -11, -10 ] -> [ -11, -13, -10, -12 ]
object homomorphisms:
IdentityMapping( d8 )
GroupHomomorphismByImages( d8, d8, [ (5,6,7,8), (5,7) ], 
[ (5,6,7,8), (5,8)(6,7) ] )
IdentityMapping( d8 )
GroupHomomorphismByImages( d8, d8, [ (5,6,7,8), (5,7) ], [ (5,8,7,6), (5,7) ] )
gap> u1 := z1*w1*y1*x1*z1; 
(1,2,4,3)(5,17,23,11,6,18,24,16)(7,19,25,15,9,21,27,13)(8,20,26,14,10,22,28,12)
gap> imu := ImageElm( MADd8, u );; 
gap> u1 = imu;
true

6.1-7 AutomorphismGroupoidOfGroupoid
‣ AutomorphismGroupoidOfGroupoid( gpd )( attribute )

If G is a single piece groupoid with automorphism group Aut(G), and if H is the union of k pieces, all isomorphic to G, then the automorphism group of H is the wreath product S_k ⋉ Aut(G). However, we find it more convenient to construct the automorphism groupoid of H. This is a single piece groupoid AUT(H) with k objects - the object lists of the pieces of H - and root group Aut(G). Isomorphisms between the root groups of the k pieces may be applied to the generators of Aut(G) to construct automorphism groups of these pieces, and then isomorphisms between these automorphism groups. We then construct AUT(H) using GroupoidByIsomorphisms.

In the special case that H is homogeneous, there is no need to construct a collection of automorphism groups. Rather, the rays of AUT(H) are given by IsomorphismNewObjects. For the example we use HGd8 constructed in subsection HomogeneousGroupoid (4.1-5).


gap> HGd8 := HomogeneousGroupoid( Gd8, 
>                [ [-39,-38,-37], [-36,-35,-34], [-33,-32,-31] ] );;
gap> SetName( HGd8, "HGd8" );
gap> AHGd8 := AutomorphismGroupoidOfGroupoid( HGd8 ); 
Aut(HGd8)
gap> ObjectList( AHGd8 );
[ [ -39, -38, -37 ], [ -36, -35, -34 ], [ -33, -32, -31 ] ]
gap> RaysOfGroupoid( AHGd8 ){[2..3]};
[ groupoid homomorphism : 
    [ [ [(5,6,7,8) : -39 -> -39], [(5,7) : -39 -> -39], [() : -39 -> -38], 
          [() : -39 -> -37] ], 
      [ [(5,6,7,8) : -36 -> -36], [(5,7) : -36 -> -36], [() : -36 -> -35], 
          [() : -36 -> -34] ] ], groupoid homomorphism : 
    [ [ [(5,6,7,8) : -39 -> -39], [(5,7) : -39 -> -39], [() : -39 -> -38], 
          [() : -39 -> -37] ], 
      [ [(5,6,7,8) : -33 -> -33], [(5,7) : -33 -> -33], [() : -33 -> -32], 
          [() : -33 -> -31] ] ] ]
gap> obgp := ObjectGroup( AHGd8, [ -36, -35, -34 ] );; 
gap> Size( obgp );    ## 3!*8^3
3072

6.2 Matrix representations of groupoids

Suppose that gpd is the direct product of a group G and a complete digraph, and that ρ : G -> M is an isomorphism to a matrix group M. Then, if rep is the isomorphic groupoid with the same objects and root group M, there is an isomorphism μ from gpd to rep mapping (g : i -> j) to (ρ g : i -> j).

When gpd is a groupoid with rays, a representation can be obtained by restricting a representation of its parent.


gap> reps := IrreducibleRepresentations( a4 );; 
gap> rep4 := reps[4]; 
Pcgs([ (2,4,3), (1,3)(2,4), (1,2)(3,4) ]) -> 
[ [ [ 0, 0, 1 ], [ 1, 0, 0 ], [ 0, 1, 0 ] ], 
  [ [ -1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, -1 ] ], 
  [ [ 1, 0, 0 ], [ 0, -1, 0 ], [ 0, 0, -1 ] ] ]
gap> Ra4 := Groupoid( Image( rep4 ), Ga4!.objects );; 
gap> ObjectList( Ra4 ) = [ -15 .. -11 ];
true
gap> gens := GeneratorsOfGroupoid( Ga4 );
[ [(1,2,3) : -15 -> -15], [(2,3,4) : -15 -> -15], [() : -15 -> -14],
  [() : -15 -> -13], [() : -15 -> -12], [() : -15 -> -11] ]
gap> images := List( gens, 
>        g -> Arrow( Ra4, ImageElm(rep4,g![2]), g![3], g![4] ) ); 
[ [[ [ 0, 0, -1 ], [ 1, 0, 0 ], [ 0, -1, 0 ] ] : -15 -> -15], 
  [[ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] : -15 -> -15], 
  [[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] : -15 -> -14], 
  [[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] : -15 -> -13], 
  [[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] : -15 -> -12], 
  [[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] : -15 -> -11] ]
gap> mor := GroupoidHomomorphismFromSinglePiece( Ga4, Ra4, gens, images );

groupoid homomorphism : 
[ [ [(1,2,3) : -15 -> -15], [(2,3,4) : -15 -> -15], [() : -15 -> -14], 
      [() : -15 -> -13], [() : -15 -> -12], [() : -15 -> -11] ], 
  [ [[ [ 0, 0, -1 ], [ 1, 0, 0 ], [ 0, -1, 0 ] ] : -15 -> -15], 
      [[ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] : -15 -> -15], 
      [[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] : -15 -> -14], 
      [[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] : -15 -> -13], 
      [[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] : -15 -> -12], 
      [[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] : -15 -> -11] ] ]
gap> IsMatrixGroupoid( Ra4 ); 
true
gap> a := Arrow( Ha4, (1,4,2), -12, -13 );
[(1,4,2) : -12 -> -13]
gap> ImageElm( mor, a );
[[ [ 0, 0, 1 ], [ -1, 0, 0 ], [ 0, -1, 0 ] ] : -12 -> -13]
gap> rmor := RestrictedMappingGroupoids( mor, Ha4 );
groupoid homomorphism : 
[ [ [(1,2,3) : -14 -> -14], [(2,3,4) : -14 -> -14], [() : -14 -> -13], 
      [() : -14 -> -12] ], 
  [ [[ [ 0, 0, -1 ], [ 1, 0, 0 ], [ 0, -1, 0 ] ] : -14 -> -14], 
      [[ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] : -14 -> -14], 
      [[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] : -14 -> -13], 
      [[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] : -14 -> -12] ] ]
gap> ParentMappingGroupoids( rmor ) = mor;
true

6.3 Groupoid actions

Recall from sections 4.5 and GroupoidInnerAutomorphism (6.1-2) the notion of conjugation in a groupoid, and the associated inner automorphisms.

It was mentioned there that the map ∧ : G -> Aut(G),~ a -> ∧ a, is not a groupoid homomorphism. It is in fact a groupoid action which we now define. Let {p,q,r,u,v} be distinct objects in G and let:

a_1 = (c_1 : p -> q),~~ a_2 = (c_2 : q -> r),~~ a_3 = (c_3 : q -> p),~~ a_4 = (c_4 : u -> v),

b_1 = (d_1 : p -> p),~~ b_2 = (d_2 : p -> p),~~ b_3 = (d_3 : q -> q),~~ b_4 = (c_3c_1 : q -> q) be arrows in G. Then the following conjugation identities must be satisfied:

In the following example we check the first of these identities in one particular case.


gap> c1 := Arrow( Ha4, (1,2)(3,4), -14, -13);;
gap> innc1 := GroupoidInnerAutomorphism( Ha4, c1 );
groupoid homomorphism : Ha4 -> Ha4
[ [ [(1,2,3) : -14 -> -14], [(2,3,4) : -14 -> -14], [() : -14 -> -13], 
      [() : -14 -> -12] ], 
  [ [(1,4,2) : -13 -> -13], [(1,4,3) : -13 -> -13], [() : -13 -> -14], 
      [(1,2)(3,4) : -13 -> -12] ] ]
gap> c2 := Arrow( Ha4, (1,4,2), -13, -12);;
gap> innc2 := GroupoidInnerAutomorphism( Ha4, c2 );
groupoid homomorphism : Ha4 -> Ha4
[ [ [(1,2,3) : -14 -> -14], [(2,3,4) : -14 -> -14], [() : -14 -> -13], 
      [() : -14 -> -12] ], 
  [ [(1,2,3) : -14 -> -14], [(2,3,4) : -14 -> -14], [(1,4,2) : -14 -> -12], 
      [(1,2,4) : -14 -> -13] ] ]
gap> c12 := c1 * c2;
[(2,4,3) : -14 -> -12]
gap> innc12 := GroupoidInnerAutomorphism( Ha4, c12 );
groupoid homomorphism : Ha4 -> Ha4
[ [ [(1,2,3) : -14 -> -14], [(2,3,4) : -14 -> -14], [() : -14 -> -13], 
      [() : -14 -> -12] ], 
  [ [(1,4,2) : -12 -> -12], [(2,3,4) : -12 -> -12], [(2,3,4) : -12 -> -13], 
      [(2,4,3) : -12 -> -14] ] ]
gap> [ innc1 * innc2 * innc1 = innc12, innc2 * innc1 * innc2 = innc12 ];
[ true, true ]

6.3-1 GroupoidActionByConjugation
‣ GroupoidActionByConjugation( gpd )( operation )
‣ IsGroupoidAction( map )( category )
‣ ActionMap( act )( attribute )

The operation GroupoidInnerAutomorphism, which produces the conjugation action of G on itself, does satisfy the conjugation identities and so provides a standard example of an action.

An action is a record with fields Source, Range and ActionMap.

The examples repeat those in section GroupoidInnerAutomorphism (6.1-2): firstly with a groupoid acting on itself.


gap> act1 := GroupoidActionByConjugation( Ha4 );
<general mapping: Ha4 -> Aut(Ha4) >
gap> IsGroupoidAction( act1 );
true
gap> amap1 := ActionMap( act1 );;
gap> amap1( h4 ) = inn1;
true

Secondly with an action on a single piece, normal subgroupoid.


gap> act2 := GroupoidActionByConjugation( Ha4, Nk4 );
<general mapping: Ha4 -> Aut(Nk4) >
gap> IsGroupoidAction( act2 );
true
gap> amap2 := ActionMap( act2 );;
gap> amap2( e4 ) = inn2;
true

Thirly with an action on a homogeneous, discrete subgroupoid.


gap> act3 := GroupoidActionByConjugation( Ha4, Ma4 );
<general mapping: Ha4 -> Aut(Ma4) >
gap> IsGroupoidAction( act3 );
true
gap> amap3 := ActionMap( act3 );;
gap> amap3( e4 ) = inn3;
true

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 Bib Ind

generated by GAPDoc2HTML