automgrp : a GAP 4 package - Index

A B C D E F G H I L M N O P Q R S T U V W

A

AbelImage 2.3.24
action, of tree homomorphism on letter 3.3.2
action, of tree homomorphism on vertex 3.3.2
AddingMachine 5.3.5
AdjacencyMatrix 4.2.8
AG_AddRelators 2.6.2
AG_RewritingSystemRules 2.6.4
AG_UpdateRewritingSystem 2.6.3
AG_UseRewritingSystem 2.6.1
Airplane 5.3.17
AleshinGroup 5.3.7
AllSections 3.4.2
AreEquivalentAutomata 4.2.22
AutomatonGroup 2.1.1
AutomatonList, for automaton 4.1.5
AutomatonList, for tree homomorphism (semi)group 2.2.17
AutomatonNucleus 4.2.21
AutomatonSemigroup 2.1.2
AutomGrp2FR 5.1.2
AutomPortrait 3.5.1
AutomPortraitBoundary 3.5.1
AutomPortraitDepth 3.5.1

B

BartholdiGrigorchukGroup 5.3.13
BartholdiNonunifExponGroup 5.3.15
Basic properties of groups and semigroups 2.2
Basilica 5.3.3
Bellaterra 5.3.8

C

ContainsSphericallyTransitiveElement 2.2.6
Contracting groups 2.5
ContractingLevel 2.5.4
ContractingTable 2.5.5
Converters to and from FR package 5.1
Creation of groups and semigroups 2.1
Creation of tree automorphisms and homomorphisms 3.1

D

Decompose 3.3.5
Definition 4.1
DegreeOfTree 2.2.2
DiagonalPower 2.3.25
DisjointUnion 4.2.18
DoNotUseContraction 2.5.6
DualAutomaton 4.2.10

E

Elements of contracting groups 3.5
Elements of groups and semigroups defined by wreath recursion 3.4

F

FindElement 2.3.13
FindElementOfInfiniteOrder 2.3.14
FindElements 2.3.13
FindElementsOfInfiniteOrder 2.3.14
FindGroupRelations 2.3.10
FindNucleus 2.3.18
FindSemigroupRelations 2.3.11
FixesLevel 2.3.6
FixesVertex 2.3.7
FR2AutomGrp 5.1.1

G

GeneratingSetWithNucleus 2.5.2
GeneratingSetWithNucleusAutom 2.5.3
GrigorchukErschlerGroup 5.3.14
GrigorchukGroup 5.3.1
GroupNucleus 2.5.1
Growth 2.3.16
GuptaFabrikowskiGroup 5.3.12
GuptaSidki3Group 5.3.11

H

Hanoi3 5.3.10
Hanoi4 5.3.10

I

IMG_z2plusI 5.3.16
in 3.3.6
InfiniteDihedral 5.3.6
Installation instructions 1.2
Introduction 1.0
InverseAutomaton 4.2.11
IsAcyclic 4.2.9
IsAmenable 2.2.15
IsAutomatonGroup 2.1.7
IsAutomGroup 2.1.6
IsBireversible 4.2.12
IsBounded 4.2.6
IsContracting 2.2.9
IsFiniteState, for tree homomorphism 3.4.1
IsFiniteState, for tree homomorphism (semi)group 2.4.1
IsFractal 2.2.3
IsFractalByWords 2.2.4
IsGeneratedByAutomatonOfPolynomialGrowth 2.2.11
IsGeneratedByBoundedAutomaton 2.2.12
IsInvertible 4.2.2
IsIRAutomaton 4.2.14
IsMDReduced 4.2.17
IsMDTrivial 4.2.16
IsMealyAutomaton 4.1.2
IsNoncontracting 2.2.10
IsOfPolynomialGrowth 4.2.5
IsOfSubexponentialGrowth 2.2.14
IsomorphicAutomGroup 2.4.2
IsomorphicAutomSemigroup 2.4.3
IsomorphismPermGroup 2.3.20
IsOne 3.2.3
IsOneContr 3.2.4
IsReversible 4.2.13
IsSelfSimGroup 2.1.8
IsSelfSimilar 2.2.8
IsSelfSimilarGroup 2.1.9
IsSphericallyTransitive, for tree homomorphism 3.2.1
IsSphericallyTransitive, for tree homomorphism (semi)group 2.2.5
IsTransitiveOnLevel, for tree homomorphism 3.2.2
IsTransitiveOnLevel, for tree homomorphism (semi)group 2.2.7
IsTreeAutomorphismGroup 2.1.5
IsTrivial 4.2.1
Iterator 2.3.12

L

Lamplighter 5.3.4
LevelOfFaithfulAction 2.3.19
ListOfElements 2.3.17

M

MarkovOperator 2.3.22
MDReduction 4.2.15
MealyAutomaton 4.1.1
MihailovaSystem 2.3.23
MinimizationOfAutomaton 4.2.3
MinimizationOfAutomatonTrack 4.2.4
Miscellaneous 5.0
MonomorphismToAutomatonGroup 2.4.6
MonomorphismToAutomatonSemigroup 2.4.7
MultAutomAlphabet 2.3.26

N

Noninitial automata 4.0
NumberOfStates 4.1.3
NumberOfVertex 5.2.1

O

Operations with groups and semigroups 2.3
Operations with tree automorphisms and homomorphisms 3.3
OrbitOfVertex 3.3.7
Order 3.2.5
OrderUsingSections 3.2.6

P

Perm 3.2.7
PermActionOnLevel 3.3.9
PermGroupOnLevel 2.3.1
PermOnLevel 3.2.8
PermOnLevelAsMatrix 3.2.9
PolynomialDegreeOfGrowth 4.2.7
PolynomialDegreeOfGrowthOfUnderlyingAutomaton 2.2.13
PrintOrbitOfVertex 3.3.8
product, for noninitial automata 4.2.19
product, for tree homomorphisms 3.3.1
Projection 2.3.8
ProjectionNC 2.3.8
ProjStab 2.3.9
Properties and attributes of tree automorphisms and homomorphisms 3.2
Properties and operations with group and semigroup elements 3.0
Properties and operations with groups and semigroups 2.0

Q

Quick example 1.3

R

Rabbit 5.3.17
Random 2.3.21
RecurList, for tree homomorphism (semi)group 2.2.18
Representative 3.1.3
Rewriting Systems 2.6

S

Section, for tree homomorphism 3.3.3
Sections 3.3.4
Self-similar groups and semigroups defined by the wreath recursion 2.4
SelfSimilarGroup 2.1.3
SelfSimilarSemigroup 2.1.4
Short math background 1.1
SizeOfAlphabet 4.1.4
Some predefined groups 5.3
SphericallyTransitiveElement 2.3.15
StabilizerOfFirstLevel 2.3.4
StabilizerOfLevel 2.3.3
StabilizerOfVertex 2.3.5
SubautomatonWithStates 4.2.20
SushchanskyGroup 5.3.9

T

Tools 4.2
TopDegreeOfTree 2.2.1
TransformationOnFirstLevel 3.2.10
TransformationOnLevel 3.2.10
TransformationOnLevelAsMatrix 3.2.11
TransformationSemigroupOnLevel 2.3.2
TreeAutomorphism 3.1.1
TreeHomomorphism 3.1.2
Trees 5.2
TwoStateSemigroupOfIntermediateGrowth 5.3.18

U

UnderlyingAutomaton 2.2.16
UnderlyingAutomatonGroup 2.4.4
UnderlyingAutomatonSemigroup 2.4.5
UnderlyingAutomFamily 2.3.27
UniversalD_omega 5.3.19
UniversalGrigorchukGroup 5.3.2
UseContraction 2.5.6

V

VertexNumber 5.2.2

W

Word 3.2.12

[Up]

automgrp manual
September 2019