automgrp : a GAP 4 package - Index
A
B
C
D
E
F
G
H
I
L
M
N
O
P
Q
R
S
T
U
V
W
- AbelImage 2.3.24
- action, of tree homomorphism on letter 3.3.2
- action, of tree homomorphism on vertex 3.3.2
- AddingMachine 5.3.5
- AdjacencyMatrix 4.2.8
- AG_AddRelators 2.6.2
- AG_RewritingSystemRules 2.6.4
- AG_UpdateRewritingSystem 2.6.3
- AG_UseRewritingSystem 2.6.1
- Airplane 5.3.17
- AleshinGroup 5.3.7
- AllSections 3.4.2
- AreEquivalentAutomata 4.2.22
- AutomatonGroup 2.1.1
- AutomatonList, for automaton 4.1.5
- AutomatonList, for tree homomorphism (semi)group 2.2.17
- AutomatonNucleus 4.2.21
- AutomatonSemigroup 2.1.2
- AutomGrp2FR 5.1.2
- AutomPortrait 3.5.1
- AutomPortraitBoundary 3.5.1
- AutomPortraitDepth 3.5.1
- BartholdiGrigorchukGroup 5.3.13
- BartholdiNonunifExponGroup 5.3.15
- Basic properties of groups and semigroups 2.2
- Basilica 5.3.3
- Bellaterra 5.3.8
- ContainsSphericallyTransitiveElement 2.2.6
- Contracting groups 2.5
- ContractingLevel 2.5.4
- ContractingTable 2.5.5
- Converters to and from FR package 5.1
- Creation of groups and semigroups 2.1
- Creation of tree automorphisms and homomorphisms 3.1
- Decompose 3.3.5
- Definition 4.1
- DegreeOfTree 2.2.2
- DiagonalPower 2.3.25
- DisjointUnion 4.2.18
- DoNotUseContraction 2.5.6
- DualAutomaton 4.2.10
- Elements of contracting groups 3.5
- Elements of groups and semigroups defined by wreath recursion 3.4
- FindElement 2.3.13
- FindElementOfInfiniteOrder 2.3.14
- FindElements 2.3.13
- FindElementsOfInfiniteOrder 2.3.14
- FindGroupRelations 2.3.10
- FindNucleus 2.3.18
- FindSemigroupRelations 2.3.11
- FixesLevel 2.3.6
- FixesVertex 2.3.7
- FR2AutomGrp 5.1.1
- GeneratingSetWithNucleus 2.5.2
- GeneratingSetWithNucleusAutom 2.5.3
- GrigorchukErschlerGroup 5.3.14
- GrigorchukGroup 5.3.1
- GroupNucleus 2.5.1
- Growth 2.3.16
- GuptaFabrikowskiGroup 5.3.12
- GuptaSidki3Group 5.3.11
- Hanoi3 5.3.10
- Hanoi4 5.3.10
- IMG_z2plusI 5.3.16
- in 3.3.6
- InfiniteDihedral 5.3.6
- Installation instructions 1.2
- Introduction 1.0
- InverseAutomaton 4.2.11
- IsAcyclic 4.2.9
- IsAmenable 2.2.15
- IsAutomatonGroup 2.1.7
- IsAutomGroup 2.1.6
- IsBireversible 4.2.12
- IsBounded 4.2.6
- IsContracting 2.2.9
- IsFiniteState, for tree homomorphism 3.4.1
- IsFiniteState, for tree homomorphism (semi)group 2.4.1
- IsFractal 2.2.3
- IsFractalByWords 2.2.4
- IsGeneratedByAutomatonOfPolynomialGrowth 2.2.11
- IsGeneratedByBoundedAutomaton 2.2.12
- IsInvertible 4.2.2
- IsIRAutomaton 4.2.14
- IsMDReduced 4.2.17
- IsMDTrivial 4.2.16
- IsMealyAutomaton 4.1.2
- IsNoncontracting 2.2.10
- IsOfPolynomialGrowth 4.2.5
- IsOfSubexponentialGrowth 2.2.14
- IsomorphicAutomGroup 2.4.2
- IsomorphicAutomSemigroup 2.4.3
- IsomorphismPermGroup 2.3.20
- IsOne 3.2.3
- IsOneContr 3.2.4
- IsReversible 4.2.13
- IsSelfSimGroup 2.1.8
- IsSelfSimilar 2.2.8
- IsSelfSimilarGroup 2.1.9
- IsSphericallyTransitive, for tree homomorphism 3.2.1
- IsSphericallyTransitive, for tree homomorphism (semi)group 2.2.5
- IsTransitiveOnLevel, for tree homomorphism 3.2.2
- IsTransitiveOnLevel, for tree homomorphism (semi)group 2.2.7
- IsTreeAutomorphismGroup 2.1.5
- IsTrivial 4.2.1
- Iterator 2.3.12
- Lamplighter 5.3.4
- LevelOfFaithfulAction 2.3.19
- ListOfElements 2.3.17
- MarkovOperator 2.3.22
- MDReduction 4.2.15
- MealyAutomaton 4.1.1
- MihailovaSystem 2.3.23
- MinimizationOfAutomaton 4.2.3
- MinimizationOfAutomatonTrack 4.2.4
- Miscellaneous 5.0
- MonomorphismToAutomatonGroup 2.4.6
- MonomorphismToAutomatonSemigroup 2.4.7
- MultAutomAlphabet 2.3.26
- Noninitial automata 4.0
- NumberOfStates 4.1.3
- NumberOfVertex 5.2.1
- Operations with groups and semigroups 2.3
- Operations with tree automorphisms and homomorphisms 3.3
- OrbitOfVertex 3.3.7
- Order 3.2.5
- OrderUsingSections 3.2.6
- Perm 3.2.7
- PermActionOnLevel 3.3.9
- PermGroupOnLevel 2.3.1
- PermOnLevel 3.2.8
- PermOnLevelAsMatrix 3.2.9
- PolynomialDegreeOfGrowth 4.2.7
- PolynomialDegreeOfGrowthOfUnderlyingAutomaton 2.2.13
- PrintOrbitOfVertex 3.3.8
- product, for noninitial automata 4.2.19
- product, for tree homomorphisms 3.3.1
- Projection 2.3.8
- ProjectionNC 2.3.8
- ProjStab 2.3.9
- Properties and attributes of tree automorphisms and homomorphisms 3.2
- Properties and operations with group and semigroup elements 3.0
- Properties and operations with groups and semigroups 2.0
- Quick example 1.3
- Rabbit 5.3.17
- Random 2.3.21
- RecurList, for tree homomorphism (semi)group 2.2.18
- Representative 3.1.3
- Rewriting Systems 2.6
- Section, for tree homomorphism 3.3.3
- Sections 3.3.4
- Self-similar groups and semigroups defined by the wreath recursion 2.4
- SelfSimilarGroup 2.1.3
- SelfSimilarSemigroup 2.1.4
- Short math background 1.1
- SizeOfAlphabet 4.1.4
- Some predefined groups 5.3
- SphericallyTransitiveElement 2.3.15
- StabilizerOfFirstLevel 2.3.4
- StabilizerOfLevel 2.3.3
- StabilizerOfVertex 2.3.5
- SubautomatonWithStates 4.2.20
- SushchanskyGroup 5.3.9
- Tools 4.2
- TopDegreeOfTree 2.2.1
- TransformationOnFirstLevel 3.2.10
- TransformationOnLevel 3.2.10
- TransformationOnLevelAsMatrix 3.2.11
- TransformationSemigroupOnLevel 2.3.2
- TreeAutomorphism 3.1.1
- TreeHomomorphism 3.1.2
- Trees 5.2
- TwoStateSemigroupOfIntermediateGrowth 5.3.18
- UnderlyingAutomaton 2.2.16
- UnderlyingAutomatonGroup 2.4.4
- UnderlyingAutomatonSemigroup 2.4.5
- UnderlyingAutomFamily 2.3.27
- UniversalD_omega 5.3.19
- UniversalGrigorchukGroup 5.3.2
- UseContraction 2.5.6
- VertexNumber 5.2.2
- Word 3.2.12
[Up]
automgrp manual
September 2019