Let \(f: \mathbb{Z}_2^n \to \mathbb{Z}_2\) be a Boolean function. The vector
\[ F=(\;f(0),\; f(1),\; \ldots,\; f(2^n-1)\;)^T, \]
where \(f(i)\) for each \(i \in \{0,1,\ldots,2^n-1\}\) is the value of \(f(x_1,\ldots,x_n)\) of the i-th row in the truth table, is called the truth vector.
As a generalization of Boolean logic we can consider the \(k\)-valued logic, thus \(f: \mathbb{Z}_k^n \to \mathbb{Z}_k\). Other way to generalize the concept of Boolean functions is the introduction of discrete logic functions, defined in Chapter 5.
‣ LogicFunction ( NumVars, Dimension, Output ) | ( function ) |
For the positive integer NumVars
- the number of variables, a positive integer Dimension
- the number of possible logical values and a list non-negative integers Output
- the truth vector of the given Dimension
-valued logic function of NumVars
variables, the function LogicFunction
returns an object, representing the corresponding logic function.
Note that Dimension
can be also a list of NumVars
positive integer numbers if we deal with discrete logic functions.
gap> f:=LogicFunction(2,2,[0,0,1,1]); < Boolean function of 2 variables > gap> Display(f); Boolean function of 2 variables. [ 0, 0 ] || 0 [ 0, 1 ] || 0 [ 1, 0 ] || 1 [ 1, 1 ] || 1 gap> f:=LogicFunction(2,3,[0,0,1,1,2,1,2,0,1]); < 3-valued logic function of 2 variables > gap> Display(f); 3-valued logic function of 2 variables. [ 0, 0 ] || 0 [ 0, 1 ] || 0 [ 0, 2 ] || 1 [ 1, 0 ] || 1 [ 1, 1 ] || 2 [ 1, 2 ] || 1 [ 2, 0 ] || 2 [ 2, 1 ] || 0 [ 2, 2 ] || 1
‣ IsLogicFunction ( Obj ) | ( function ) |
For the object Obj
the function IsLogicFunction
returns true
if Obj
is a logic function (see LogicFunction
(2.1-1)), and false
otherwise.
gap> f:=LogicFunction(2,2,[0,1,1,1]);; gap> IsLogicFunction(f); true
‣ PolynomialToBooleanFunction ( Pol, NumVars ) | ( function ) |
For the polynomial Pol
over \(GF(2)\) and the number of variables NumVar
the function PolynomialToBooleanFunction
returns a Boolean logic function which is realized by Pol
.
gap> x:=Indeterminate(GF(2),"x");; gap> y:=Indeterminate(GF(2),"y");; gap> pol:=x+y;; gap> f:=PolynomialToBooleanFunction(pol,2); < Boolean function of 2 variables > gap> Display(f); Boolean function of 2 variables. [ 0, 0 ] || 0 [ 0, 1 ] || 1 [ 1, 0 ] || 1 [ 1, 1 ] || 0
‣ IsUnateInVariable ( Func, Var ) | ( function ) |
A Boolean function \(f(x_1,\ldots ,x_n)\) is positive unate in \(x_{i}\) if for all possible values of \(x_{j}\) with \(j\neq i\) we have
\[ f(x_{1},\ldots ,x_{i-1},1,x_{i+1},\ldots ,x_{n})\geq f(x_{1},\ldots ,x_{i-1},0,x_{i+1},\ldots ,x_{n}). \]
A Boolean function \(f(x_1,\ldots ,x_n)\) is negative unate in \(x_{i}\) if
\[ f(x_{1},\ldots ,x_{i-1},0,x_{i+1},\ldots ,x_{n})\geq f(x_{1},\ldots ,x_{i-1},1,x_{i+1},\ldots ,x_{n}). \]
For the Boolean function Func
and the positive integer Var
(which represents the number of the variable) the function IsUnateBooleanFunction
returns true
if Func
is unate (either positive or negative) in this variable and false
otherwise.
gap> f:=LogicFunction(3,2,[0,0,0,0,0,1,1,0]); < Boolean function of 3 variables > gap> Display(f); Boolean function of 3 variables. [ 0, 0, 0 ] || 0 [ 0, 0, 1 ] || 0 [ 0, 1, 0 ] || 0 [ 0, 1, 1 ] || 0 [ 1, 0, 0 ] || 0 [ 1, 0, 1 ] || 1 [ 1, 1, 0 ] || 1 [ 1, 1, 1 ] || 0 gap> IsUnateInVariable(f,1); true gap> IsUnateInVariable(f,2); false gap> IsUnateInVariable(f,3); false
‣ IsUnateBooleanFunction ( Func ) | ( function ) |
If a Boolean function \(f\) is either positive or negative unate in each variable then it is said to be unate (note that some \(x_{i}\) may be positive unate and some negative unate to satisfy the definition of unate function). A Boolean function \(f\) is binate if it is not unate (i.e., is neither positive unate nor negative unate in at least one of its variables).
All threshold functions are unate. However, the converse is not true, because there are certain unate functions, that can not be realized by STE [AQR99].
For the Boolean function Func
the function IsUnateBooleanFunction
returns true
if Func
is unate and false
otherwise.
gap> f:=LogicFunction(2,2,[0,1,1,1]);; gap> IsUnateBooleanFunction(f); true gap> f:=LogicFunction(2,2,[0,1,1,0]);; gap> IsUnateBooleanFunction(f); false
‣ InfluenceOfVariable ( Func, Var ) | ( function ) |
The influence of a variable \(x_i\) measures how many times out of the total existing cases a change on that variable produces a change on the output of the function.
For the Boolean function Func
and the positive integer Var
the function InfluenceOfVariable
returns a positive integer - the weighted influence of the variable Var
(to obtain integer values we multiply the influence of the variable by \(2^n\), where \(n\) is the number of variables of Func
).
gap> f:=LogicFunction(3,2,[0,0,0,0,0,1,1,0]); < Boolean function of 3 variables > gap> Display(f); Boolean function of 3 variables. [ 0, 0, 0 ] || 0 [ 0, 0, 1 ] || 0 [ 0, 1, 0 ] || 0 [ 0, 1, 1 ] || 0 [ 1, 0, 0 ] || 0 [ 1, 0, 1 ] || 1 [ 1, 1, 0 ] || 1 [ 1, 1, 1 ] || 0 gap> InfluenceOfVariable(f,2); 2
‣ SelfDualExtensionOfBooleanFunction ( Func ) | ( function ) |
The self-dual extension of a Boolean function \(f^{n}:\mathbb{Z}_2^n \to \mathbb{Z}_2\) of \(n\) variables is a Boolean function \(f^{n+1}:\mathbb{Z}_2^{n+1} \to \mathbb{Z}_2\) of \(n+1\) variables defined as
\[ f^{n+1}(x_1,\ldots,x_n,x_{n+1})=f^{n}(x_1,\ldots,x_n) \quad \textrm{if} \quad x_{n+1}=0, \]
\[ f^{n+1}(x_1,\ldots,x_n,x_{n+1})=1-f^{n}(\overline x_1,\ldots,\overline x_n) \quad \textrm{if} \quad x_{n+1}=1, \]
where \(\overline x_i = x_i \oplus 1\) is the negation of the \(i\)-th variable.
Every threshold function is unate. However, in [FSAJ06] was shown that the unatness in the self-dual space of \(n+1\) variables is much stronger condition.
For the Boolean function Func
the function SelfDualExtensionOfBooleanFunction
returns the self-dual extension of Func
.
gap> f:=LogicFunction(2,2,[0,0,0,1]); < Boolean function of 2 variables > gap> Display(f); Boolean function of 2 variables. [ 0, 0 ] || 0 [ 0, 1 ] || 0 [ 1, 0 ] || 0 [ 1, 1 ] || 1 gap> fsd:=SelfDualExtensionOfBooleanFunction(f); < Boolean function of 3 variables > gap> Display(fsd); Boolean function of 3 variables. [ 0, 0, 0 ] || 0 [ 0, 0, 1 ] || 0 [ 0, 1, 0 ] || 0 [ 0, 1, 1 ] || 1 [ 1, 0, 0 ] || 0 [ 1, 0, 1 ] || 1 [ 1, 1, 0 ] || 1 [ 1, 1, 1 ] || 1
‣ SplitBooleanFunction ( Func, Var, Bool ) | ( function ) |
The method of splitting a function in terms of a given variable is known as Shannon decomposition and it was formally introduced in 1938 by Shannon.
Let \(f(x_1,\ldots,x_n)\) be a Boolean function. Decompose \(f\) as a disjunction of the following two Boolean functions \(f_a\) and \(f_b\) defined as:
\[ \textstyle f_a(x_1,\ldots,x_n)=f(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n) \quad \textrm{if} \quad x_i=0, \]
\[ f_a(x_1,\ldots,x_n)=0, \quad \textrm{if} \quad x_i=1; \]
and
\[ f_b(x_1,\ldots,x_n)= 0 \quad \textrm{if} \quad x_i=0,\quad \]
\[ f_b(x_1,\ldots,x_n)=f(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n) \quad \textrm{if} \quad x_i=1. \]
If we are intended to use conjunction, we can apply the same equations with 1 for undetermined outputs instead of 0.
For the Boolean function Func
, a positive integer Var
(the number of variable), Boolean variable Bool
(true
for disjunction and false
for conjunction) the function SplitBooleanFunction
returns a list with two entries: the resulting Boolean logic functions.
gap> f:=LogicFunction(2,2,[0,1,1,0]);; gap> Display(f); Boolean function of 2 variables. [ 0, 0 ] || 0 [ 0, 1 ] || 1 [ 1, 0 ] || 1 [ 1, 1 ] || 0 gap> out:=SplitBooleanFunction(f,1,false);; gap> Print(out[1]); [2, 2,[ 0, 1, 1, 1 ]] gap> Print(out[2]); [2, 2,[ 1, 1, 1, 0 ]] gap> out:=SplitBooleanFunction(f,1,true);; gap> Print(out[1]); [2, 2,[ 0, 1, 0, 0 ]] gap> Print(out[2]); [2, 2,[ 0, 0, 1, 0 ]]
‣ KernelOfBooleanFunction ( Func ) | ( function ) |
For a Boolean function \(f(x_1,\ldots,x_n)\) we define the following two sets (see [ABGG80]):
The kernel \(K(f)\) of the Boolean function \(f\) is defined as
\[ K(f)=f^{-1}(1), \quad \textrm{ if } \quad |f^{-1}(1)| \geq |f^{-1}(0)|; \]
\[ K(f)=f^{-1}(0), \quad \textrm{otherwise,} \]
where \(|f^{-1}(i)|\) is the cardinality of the set \(f^{-1}(i)\) with \(i \in \{0,1\}\).
For the Boolean function Func
the function KernelOfBooleanFunction
returns a list in which the first element of the output list represents the kernel, and the second element equals either \(1\) or \(0\).
gap> f:=LogicFunction(3,2,[0,1,1,0,1,0,0,0]);; gap> k:=KernelOfBooleanFunction(f); [ [ [ 0, 0, 1 ], [ 0, 1, 0 ], [ 1, 0, 0 ] ], 1 ]
‣ ReducedKernelOfBooleanFunction ( Ker ) | ( function ) |
Let \(f(x_1,\ldots,x_n)\) be a Boolean function with the kernel \(K(f)=\{\;a_1,\ldots,a_m\;\}\), where \(m \leq 2^{n-1}\). The reduced kernel \(K(f)_i\) of the function \(f\) relative to the element \(a_i \in K(f)\) is the following set (see [ABGG80]):
\[ K(f)_i=\big\{\;a_1 \oplus a_i, \; a_2 \oplus a_i,\; \ldots,\; a_m \oplus a_i \; \big\}, \]
where \(\oplus\) is a component-wise addition of vectors from \(K(f)\) over \(GF(2)\).
The reduced kernel \(T(f)\) of \(f\) is the following set:
\[ T(f)=\big\{ \;K(f)_i \;\mid\; i=1,2,\ldots,m \;\big\}. \]
For the \(m \times n\) matrix Ker
, which represents the kernel of some Boolean function \(f\), the function ReducedKernelOfBooleanFunction
returns the reduced kernel \(T(f)\) of \(f\).
gap> ## Continuation of Example 2.2.4 gap> rk:=ReducedKernelOfBooleanFunction(k[1]);; gap> j:=1;; gap> for i in rk do Print(j,".\n"); Display(i); Print("\n"); j:=j+1; od; 1. . . . . 1 1 1 . 1 2. . 1 1 . . . 1 1 . 3. 1 . 1 1 1 . . . .
generated by GAPDoc2HTML