Goto Chapter: Top 1 2 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[Bal12] Balogh, Z., Lie derived length and involutions in group algebras, J. Pure Appl. Algebra, 216 (6) (2012), 1282--1287.

[BJ11] Balogh, Z. and Juh\'{a}sz, T., Nilpotency class of symmetric units of group algebras, Publ. Math. Debrecen, 79 (2011), 171--180.

[BK77] Bovdi, A. and Khripta, I., Group algebras of periodic groups with solvable multiplicative group, Mat. Zametki, 22 (3) (1977), 421--432.

[BKRS17] Bovdi, V., Konovalov, A., Rossmanith, R. and Schneider, C., LAGUNA, Lie AlGebras and UNits of group Algebras, Version 3.9.0 (2017)
(Refereed GAP package), https://gap-packages.github.io/laguna.

[BL93] Bovdi, A. and Lakatos, P., On the exponent of the group of normalized units of modular group algebras, Publ. Math. Debrecen, 42 (3-4) (1993), 409--415.

[Bov98] Bovdi, A., The group of units of a group algebra of characteristic p, Publ. Math. Debrecen, 52 (1-2) (1998), 193--244.

[BR00] Bovdi, V. and Rosa, A., On the order of the unitary subgroup of a modular group algebra, Comm. Algebra (28(4)) (2000), 1897--1905.

[BS89] Bovdi, A. and Sakach, A., Unitary subgroup of the multiplicative group of a modular group algebra of a finite abelian $p$-group, Math. Zametki (45(6)) (1989), 23--29.

[BS06] Bovdi, A. and Szak\'{a}cs, A., Units of commutative group algebra with involution, Publ. Math. Debrecen (3) (2006), 291--296.

[BS18] Bovdi, V. and Salim, M., Group algebras whose groups of normalized units have exponent 4, Czechoslovak Math. J., 68(143) (1) (2018), 141--148.

[BT08] Balogh, Z. and Tibor, J., Lie derived lengths of group algebras of groups with cyclic derived subgroup, Comm. Algebra, 36 (2) (2008), 315--324.

[CG09] Creedon, L. and Gildea, J., Unitary units of the group algebra $F_{2^k}Q_8$, Int. J. Algebra Comput. (19(2)) (2009), 283--286.

[CS10] Chandra, H. and Sahai, M., Group algebras with unit groups of derived length three, J. Algebra Appl., 9 (2) (2010), 305--314.

[Kur96] Kurdics, J., Engel properties of group algebras. {I}, Publ. Math. Debrecen, 49 (1-2) (1996), 183--192.

[Kur98] Kurdics, J., Engel properties of group algebras. {II}, J. Pure Appl. Algebra, 133 (1-2) (1998), 179--196.

[Lee73] Lee, G., Group identities on units and symmetric units of group rings, Springer-Verlag London, Ltd., London (25) (1973), 748--757 pages.

[Lee00] Lee, G. T., The Lie n-Engel property in group rings, Comm. Algebra, 28 (2) (2000), 867--881.

[MS90] Mann, A. and Shalev, A., The nilpotency class of the unit group of a modular group algebra. {II}, Israel J. Math., 70 (3) (1990), 267--277.

[Seh78] Sehgal, S. K., Topics in group rings, Marcel Dekker, Inc., New York, Monographs and Textbooks in Pure and Applied Math., 50 (1978), vi+251 pages.

[Sha90a] Shalev, A., Dimension subgroups, nilpotency indices, and the number of generators of ideals in p-group algebras, J. Algebra, 129 (2) (1990), 412--438.

[Sha90b] Shalev, A., The nilpotency class of the unit group of a modular group algebra. {I}, Israel J. Math., 70 (3) (1990), 257--266.

[Sha91] Shalev, A., Lie dimension subgroups, {L}ie nilpotency indices, and the exponent of the group of normalized units, J. London Math. Soc. (2), 43 (1) (1991), 23--36.

[Sha93] Shalev, A., The nilpotency class of the unit group of a modular group algebra. {III}, Arch. Math. (Basel), 60 (2) (1993), 136--145.

[Spi08] Spinelli, E., Group algebras with minimal {L}ie derived length, J. Algebra, 320 (5) (2008), 1908--1913.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 Bib Ind

generated by GAPDoc2HTML