In this chapter we describe functions for algorithm from [BJS+].
‣ NonCompactDimension ( G ) | ( function ) |
For a real Lie algebra G constructed by the function RealFormById (from [DFdG14]), this function returns the non-compact dimension of G (dimension of a non-compact part in Cartan decomposition of G).
gap> G:=RealFormById("E",6,2); # E6(6) <Lie algebra of dimension 78 over SqrtField> gap> dG:=NonCompactDimension(G); 42
‣ PCoefficients ( type, rank ) | ( function ) |
Let G be a compact connected Lie group of the type type and the rank rank. Let ΛP_G=Λ (y_1,...,y_l) be the exterior algebra over the spaces P_G of the primitive elements in H^*(G). Denote the degrees as follows |y_j|=2p_j-1,j=1,...,l. This function returns coefficients p_1,...,p_l.
gap> PCoefficients("D",5); [ 2, 4, 6, 8, 5 ]
‣ PCalculate ( pi, qi ) | ( function ) |
Here pi={ p_1,...,p_l} and qi={ q_1,...,q_m} are sets of coefficients (l≥ m). This function returns the polynomial: P(t)=∏_j=m+1^l(1+t^2p_j-1)∏_i=1^m(1-t^2p_i)/(1-t^2q_i).
gap> PCalculate([4,2,3],[2,2]); t^9+t^5+t^4+1
‣ AllZeroDH ( type, rank, id ) | ( function ) |
Let G^C be a complex Lie algebra of the type type and the rank rank. Let G be a real form of G^C with the index id (see RealFormsInformation,[DFdG14]). This function returns the set of degrees of P(t) that have zero coefficients over all permutation (see Section 7 in [BJS+]).
gap> AllZeroDH("F",4,2); [ 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27 ]
generated by GAPDoc2HTML