Goto Chapter: Top 1 2 3 4 5 6 7 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

5 Functions for testing Majorana representations
 5.1 The main function
 5.2 Other functions

5 Functions for testing Majorana representations

The output of the function MajoranaRepresentation (3.1-1) is guaranteed to be a commutative algebra generated by idempotents whose eigenspaces obey the Majorana fusion law. To check that the output is truly a Majorana algebra, one must also check that

5.1 The main function

5.1-1 MajoranaAlgebraTest
‣ MajoranaAlgebraTest( rep )( function )

Returns: true if the algebra given by rep is indeed a Majorana algebra.

Note: does not check that the algebra obeys axiom M2 (Norton's inequality), this can be separately tested using MAJORANA_TestAxiomM2 (5.2-3).

5.2 Other functions

5.2-1 MAJORANA_TestFrobeniusForm
‣ MAJORANA_TestFrobeniusForm( rep )( function )

Returns: true if the inner product given by rep.innerproducts is a Frobenius form, otherwise returns false.

5.2-2 MAJORANA_TestInnerProduct
‣ MAJORANA_TestInnerProduct( rep )( function )

Returns: true if the inner product given by rep.innerproducts is positive definite, otherwise returns false.

5.2-3 MAJORANA_TestAxiomM2
‣ MAJORANA_TestAxiomM2( rep )( function )

Returns: true if the inner product given by rep.innerproducts obeys axiom M2 (Norton's inequality), otherwise returns false.

5.2-4 MAJORANA_TestPrimitivity
‣ MAJORANA_TestPrimitivity( rep )( function )

Returns: true if the 1-eigenspaces of all axes are 1-dimensional, otherwise returns false.

gap> G := AlternatingGroup(5);;
gap> T := AsList( ConjugacyClass(G, (1,2)(3,4)));;
gap> input := ShapesOfMajoranaRepresentation(G,T);;
gap> rep := MajoranaRepresentation(input, 2);;
gap> NClosedMajoranaRepresentation(rep);;
gap> MAJORANA_IsComplete(rep);
true
gap> MajoranaAlgebraTest(rep);
true
gap> MAJORANA_TestFrobeniusForm(rep);
true
gap> MAJORANA_TestInnerProduct(rep);
true
gap> MAJORANA_TestAxiomM2(rep);
true
gap> MAJORANA_TestPrimitivity(rep);
true
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 Ind

generated by GAPDoc2HTML