Goto Chapter: Top 1 2 3 4 5 6 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[Avi] Avis, D., lrslib -- reverse search vertex enumeration program, {A}vailable at \url{https://cgm.cs.mcgill.ca/~avis/C/lrs.html}.

[BC17] B\"achle, A. and Caicedo, M., On the prime graph question for almost simple groups with an alternating socle, Internat. J. Algebra Comput., 27 (3) (2017), 333--347.

[BH08] Bovdi, V. A. and Hertweck, M., Zassenhaus conjecture for central extensions of \(S_5\), J. Group Theory, 11 (1) (2008), 63--74.

[BHK+18] B\"{a}chle, A., Herman, A., Konovalov, A., Margolis, L. and Singh, G., The status of the Zassenhaus conjecture for small groups, Exp. Math., 27 (4) (2018), 431--436.

[BIR+] Bruns, W., Ichim, B., R\"omer, T., Sieg, R. and S\"oger, C., Normaliz. Algorithms for rational cones and affine monoids, Available at \url{https://normaliz.uos.de}.

[BJK11] Bovdi, V. A., Jespers, E. and Konovalov, A. B., Torsion units in integral group rings of Janko simple groups, Math. Comp., 80 (273) (2011), 593--615.

[BK07a] Bovdi, V. A. and Konovalov, A. B., Integral group ring of the first Mathieu simple group, in Groups St. Andrews 2005. Vol. 1, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 339 (2007), 237--245.

[BK07b] Bovdi, V. A. and Konovalov, A. B., Integral group ring of the McLaughlin simple group, Algebra Discrete Math. (2) (2007), 43--53.

[BK10] Bovdi, V. A. and Konovalov, A. B., Torsion units in integral group ring of Higman-Sims simple group, Studia Sci. Math. Hungar., 47 (1) (2010), 1--11.

[BKL08] Bovdi, V. A., Konovalov, A. B. and Linton, S., Torsion units in integral group ring of the Mathieu simple group \({\rm M}_{22}\), LMS J. Comput. Math., 11 (2008), 28--39.

[BKS20] B\"{a}chle, A., Kimmerle, W. and Serrano, M., On the first Zassenhaus conjecture and direct products, Canad. J. Math., 72 (3) (2020), 602--624.

[BM17a] B\"achle, A. and Margolis, L., On the prime graph question for integral group rings of 4-primary groups I, Internat. J. Algebra Comput., 27 (6) (2017), 731--767.

[BM17b] B\"achle, A. and Margolis, L., Rational conjugacy of torsion units in integral group rings of non-solvable groups, Proc. Edinb. Math. Soc. (2), 60 (4) (2017), 813--830.

[BM18] B\"achle, A. and Margolis, L., HeLP: a GAP package for torsion units in integral group rings, J. Softw. Algebra Geom., 8 (2018), 1--9.

[BM19a] B\"{a}chle, A. and Margolis, L., An application of blocks to torsion units in group rings, Proc. Amer. Math. Soc., 147 (10) (2019), 4221--4231.

[BM19b] B\"{a}chle, A. and Margolis, L., On the prime graph question for integral group rings of 4-primary groups II, Algebr. Represent. Theory, 22 (2) (2019), 437--457.

[BM21] B\"{a}chle, A. and Margolis, L., From examples to methods: two cases from the study of units in integral group rings, Indian J. Pure Appl. Math., 52 (3) (2021), 669--686.

[CdR20] Caicedo, M. and del R\'{\i}o, \., On the Zassenhaus conjecture for certain cyclic-by-nilpotent groups, Mediterr. J. Math., 17 (2) (2020), Paper No. 62, 17.

[CL65] Cohn, J. A. and Livingstone, D., On the structure of group algebras. I, Canad. J. Math., 17 (1965), 583--593.

[CM21] Caicedo, M. and Margolis, L., Orders of units in integral group rings and blocks of defect 1, J. Lond. Math. Soc. (2), 103 (4) (2021), 1515--1546.

[CMdR13] Caicedo, M., Margolis, L. and del R{\'{\i}}o, {., Zassenhaus conjecture for cyclic-by-abelian groups, J. Lond. Math. Soc. (2), 88 (1) (2013), 65--78.

[CR90] Curtis, C. W. and Reiner, I., Methods of representation theory. Vol. I, John Wiley \& Sons, Inc., New York, Wiley Classics Library (1990), xxiv+819 pages
(With applications to finite groups and orders, Reprint of the 1981 original, A Wiley-Interscience Publication).

[dRS19] del R\'{\i}o, \. and Serrano, M., Zassenhaus conjecture on torsion units holds for \({\rm SL}(2,p)\) and \({\rm SL}(2,p^2)\), J. Group Theory, 22 (5) (2019), 953--974.

[EM18] Eisele, F. and Margolis, L., A counterexample to the first Zassenhaus conjecture, Adv. Math., 339 (2018), 599--641.

[EM22] Eisele, F. and Margolis, L., Units in blocks of defect 1 and the Zassenhaus Conjecture, preprint, arxiv.org/abs/arXiv:2212.06634 (2022), 29 pages.

[Gil13] Gildea, J., Zassenhaus conjecture for integral group ring of simple linear groups, J. Algebra Appl., 12 (6) (2013), 1350016, 10.

[Her06] Hertweck, M., On the torsion units of some integral group rings, Algebra Colloq., 13 (2) (2006), 329--348.

[Her07] Hertweck, M., Partial Augmentations and Brauer Character values of torion Units in Group Rings, Preprint (2007)
(e-print \href{https://arxiv.org/abs/math/0612429v2}{\nolinkurl{arXiv:math.RA/0612429v2 [math.RA]}}).

[Her08a] Hertweck, M., The orders of torsion units in integral group rings of finite solvable groups, Comm. Algebra, 36 (10) (2008), 3585--3588.

[Her08b] Hertweck, M., Torsion units in integral group rings of certain metabelian groups, Proc. Edinb. Math. Soc. (2), 51 (2) (2008), 363--385.

[Her08c] Hertweck, M., Zassenhaus conjecture for \(A_6\), Proc. Indian Acad. Sci. Math. Sci., 118 (2) (2008), 189--195.

[HK06] H{\"o}fert, C. and Kimmerle, W., On torsion units of integral group rings of groups of small order, in Groups, rings and group rings, Chapman \& Hall/CRC, Boca Raton, FL, Lect. Notes Pure Appl. Math., 248 (2006), 243--252.

[JPM00] Juriaans, S. O. and Polcino Milies, C., Units of integral group rings of Frobenius groups, J. Group Theory, 3 (3) (2000), 277--284.

[Kim06] Kimmerle, W., On the prime graph of the unit group of integral group rings of finite groups, in Groups, rings and algebras, Amer. Math. Soc., Providence, RI, Contemp. Math., 420 (2006), 215--228.

[Kim07] Kimmerle, W., Mini-Workshop: Arithmetik von Gruppenringen, Oberwolfach Reports, European Mathematical Society, 4 (4) (2007), 3209-3239.

[KK15] Kimmerle, W. and Konovalov, A. B., Recent advances on torsion subgroups of Integral Group Rings, Proc. of Groups St Andrews 2013 (2015), 331--347.

[LP89] Luthar, I. S. and Passi, I. B. S., Zassenhaus conjecture for \(A_5\), Proc. Indian Acad. Sci. Math. Sci., 99 (1) (1989), 1--5.

[Mar17] Margolis, L., A Theorem of Hertweck on \(p\)-adic conjugacy, arxiv.org/abs/1706.02117 (2017), 11 pages.

[MdR19] Margolis, L. and del R\'{\i}o, \., Partial augmentations power property: a Zassenhaus conjecture related problem, J. Pure Appl. Algebra, 223 (9) (2019), 4089--4101.

[MdRS19] Margolis, L., del R\'{\i}o, \. and Serrano, M., Zassenhaus conjecture on torsion units holds for \({\rm PSL}(2,p)\) with \(p\) a Fermat or Mersenne prime, J. Algebra, 531 (2019), 320--335.

[MRSW87] Marciniak, Z., Ritter, J., Sehgal, S. and Weiss, A., Torsion units in integral group rings of some metabelian groups. II, Journal of Number Theory, 25 (3) (1987), 340--352.

[Sal11] Salim, M., Kimmerle's conjecture for integral group rings of some alternating groups, Acta Math. Acad. Paedagog. Nyh\'azi. (N.S.), 27 (1) (2011), 9--22.

[Sal13] Salim, M., The prime graph conjecture for integral group rings of some alternating groups, Int. J. Group Theory, 2 (1) (2013), 175--185.

[Seh93] Sehgal, S. K., Units in integral group rings, Longman Scientific \& Technical, Pitman Monographs and Surveys in Pure and Applied Mathematics, 69, Harlow (1993), xii+357 pages.

[Sri64] Srinivasan, B., On the modular characters of the special linear group \(SL(2,\,p^{n})\), Proc. London Math. Soc. (3), 14 (1964), 101--114.

[tea] team, 4. t. 2., 4ti2---A software package for algebraic, geometric and combinatorial problems on linear spaces, {A}vailable at \url{4ti2.github.io}.

[Wag95] Wagner, R., Zassenhausvermutung über die Gruppen \(\textup{PSL}(2, p)\) (1995), Diplomarbeit Universität Stuttgart.

[Wei91] Weiss, A., Torsion units in integral group rings, J. Reine Angew. Math., 415 (1991), 175--187.

[Zas74] Zassenhaus, H., On the torsion units of group rings, Estudos de Mathemátics em homenagem ao Prof. A. Almeida Costa, Instituto de Alta Cultura (Portugese) (1974), 119-126.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 Bib Ind

generated by GAPDoc2HTML