In the following sections, functions provided for computing Deep Thought polynomials and using them for calculations are listed.
‣ DTP_DTapplicability ( coll ) | ( function ) |
Returns: boolean
Checks the collector coll
for applicability of Deep Thought functions. Note that depending on confluency some functions may be applicable, while others are not. Information on the applicability and which type of Deep Thought polynomials are suggested is printed to the terminal. Here, "+" means that the following property is fulfilled, otherwise there is a "-". The function returns false
if Deep Thought is not applicable to the collector coll
and true
otherwise. Anyway, even if true
is returned, not all functions need to be applicable (in case of inconfluencies).
‣ DTP_DTObjFromCollector ( coll[, rs_flag] ) | ( function ) |
Returns: a DTObj
Computes a DTObj for the collector coll, either with polynomials of type \(f_{rs}\) (if rs_flag = true
) or with polynomials of type \(f_r\), if rs_flag = false
. If the optional argument rs_flag
is not provided, polynomials of type \(f_{rs}\) are computed. The function checks whether the collector coll
is confluent. If not, a warning is displayed. Note that the function assumes the collector coll
to be suitable for Deep Thought, see function DTP_DTapplicability
.
gap> G := UnitriangularPcpGroup(10, 0);; gap> coll := Collector(G);; gap> DTP_DTapplicability(coll); Checking collector for DT-applicability. "+" means the following property is fulfilled. + conjugacy relations + power relations + confluent Suggestion: Call DTP_DTObjFromColl with rs_flag = true. true # calling DTP_DTObjFromCollector without rs_flag implies rs_flag = true: gap> DTObj := DTP_DTObjFromCollector(coll); <DTObj>
‣ DTP_Exp ( expvec, int, DTObj ) | ( function ) |
Returns: an exponent vector
Computes the exponent vector of expvec
\(^{int}\). If IsConfluent(DTObj) = true
, then the result is in normal form.
‣ DTP_Inverse ( expvec, DTObj ) | ( function ) |
Returns: an exponent vector
Computes the exponent vector of the inverse of the element corresponding to expvec
. If IsConfluent(DTObj) = true
, then the result is in normal form.
‣ DTP_IsInNormalForm ( expvec, coll ) | ( function ) |
Returns: boolean or positive integer
Checks whether expvec
is in normal form or not. If yes, the return value is true
. Otherwise the return value is the smallest generator index for which the normal form condition is violated, i.e. for which the relative order RelativeOrder(coll)[i]
is non-zero, and expvec[i]
< 0
or expvec[i]
\(\geq\) RelativeOrder(coll)[i]
.
‣ DTP_Multiply ( expvec1, expvec2, DTObj ) | ( function ) |
Returns: an exponent vector
Computes the exponent vector of the product expvec1 * expvec2
using the Deep Thought polynomials. If IsConfluent(DTObj) = true
, then the result is returned in normal form. DTP_Multiply
either calls DTP_Multiply_r
or DTP_Multiply_rs
depending on which type of polynomials are stored in DTObj
.
‣ DTP_Multiply_r ( expvec1, expvec2, DTObj ) | ( function ) |
Returns: an exponent vector
Computes the exponent vector of the product expvec1 * expvec2
using the Deep Thought polynomials of type \(f_r\) stored in DT_Obj
. If IsConfluent(DTObj) = true
, then the result is returned in normal form.
‣ DTP_Multiply_rs ( expvec1, expvec2, DTObj ) | ( function ) |
Returns: an exponent vector
Computes the exponent vector of the product expvec1 * expvec2
using the Deep Thought polynomials of type \(f_{rs}\) stored in DT_Obj
. If IsConfluent(DTObj) = true
, then the result is returned in normal form.
‣ DTP_NormalForm ( expvec, DTObj ) | ( function ) |
Returns: an exponent vector
Computes the exponent vector of the normal form of expvec
. For this function to be applicable, we need IsConfluent(DTObj) = true
.
‣ DTP_Order ( expvec, DTObj ) | ( function ) |
Returns: positive integer or infinity
Computes the order of the element described by expvec
. For this function to be applicable, we need IsConfluent(DTObj) = true
.
‣ DTP_SolveEquation ( expvec1, expvec2, DTObj ) | ( function ) |
Returns: an exponent vector
Computes the exponent vector of the element corresponding to expvec1
\(^{-1}\) * expvec2
, i.e. the result solves the equation expvec1 * result = expvec2
. If IsConfluent(DTObj) = true
, then the result describes a normal form.
gap> G := PcGroupToPcpGroup(SmallGroup(23^5, 2)); Pcp-group with orders [ 23, 23, 23, 23, 23 ] gap> coll := Collector(G); <<from the left collector with 5 generators>> gap> DTObj := DTP_DTObjFromCollector(coll); <DTObj> gap> g := [100, 134, -31, 52, 5235]; [ 100, 134, -31, 52, 5235 ] gap> DTP_IsInNormalForm(g, DTObj); 1 gap> g := DTP_NormalForm(g, DTObj); [ 8, 19, 15, 10, 19 ] gap> DTP_IsInNormalForm(g, DTObj); true gap> DTP_Inverse(g, DTObj); [ 15, 4, 22, 12, 3 ] gap> DTP_Order(g, DTObj); 529 gap> h := [142, 2, -41, 23, 1]; [ 142, 2, -41, 23, 1 ] gap> DTP_Multiply(g, h, DTObj); [ 12, 21, 4, 16, 20 ]
When Deep Thought polynomials are available, certain computations allow different approaches which may be faster than the methods used by default. In this section, computations for which such extra functions taking pcp-elements as input are available are listed. All of these functions expect the collector belonging to the pcp-elements to be a DTObj
.
‣ DTP_PCP_Exp ( pcp-element, int ) | ( function ) |
Returns: pcp-element
Returns the pcp-element pcp-element
\(^{int}\). If IsConfluent(DTObj) = true
, then the result is in normal form.
‣ DTP_PCP_Inverse ( pcp-element ) | ( function ) |
Returns: pcp-element
Returns the pcp-elment pcp-element^-1
. If IsConfluent(DTObj) = true
, then the result is in normal form.
‣ DTP_PCP_NormalForm ( pcp-element ) | ( function ) |
Returns: pcp-element
Returns a pcp-element which is the normal form of the input pcp-element. For this function to be applicable, we need IsConfluent(DTObj) = true
.
‣ DTP_PCP_Order ( pcp-element ) | ( function ) |
Returns: positive integer or infinity
Computes the order of the pcp-element. For this function to be applicable, we need IsConfluent(DTObj) = true
.
‣ DTP_PCP_SolveEquation ( pcp-element1, pcp-element2 ) | ( function ) |
Returns: pcp-element
Returns the pcp-element pcp-element1
\(^{-1}\) * pcp-element2
, i.e. the result solves the equation pcp-element1 * pcp-element = pcp-element2
. If IsConfluent(DTObj) = true
, then the result describes a normal form.
gap> G := HeisenbergPcpGroup(7);; gap> coll := Collector(G);; gap> DTObj := DTP_DTObjFromCollector(coll);; gap> H := PcpGroupByCollector(DTObj);; gap> g := Random(H);; h := Random(H);; gap> DTP_PCP_SolveEquation(g, h); g1^-3*g2^-1*g3^-7*g4*g5^-6*g6*g7*g8^2*g9^3*g11^-4*g12^5*g14^-2*g15^7 g1^-3*g2^-1*g3^-7*g4*g5^-6*g6*g7*g8^2*g9^3*g11^-4*g12^5*g14^-2*g15^7 infinity gap> g^-1; g1^-2*g3^-3*g4^-1*g5^-4*g6^2*g7*g8^-3*g10^-3*g11^-1*g12^4*g14^-2*g15^-3 gap> DTP_PCP_Inverse(h); g1*g2*g3^4*g4^-2*g5^2*g6*g8^-5*g9^-3*g10^-3*g11^3*g12^-1*g15^-33
In this section, functions which can be used to display the content of a DTObj
are documented. Furthermore, Deep Thought polynomials stored in a DTObj
can be converted to GAP polynomials.
‣ DTP_Display_DTObj ( DTObj ) | ( function ) |
Returns: nothing
Prints information about DTObj
to the terminal. In particular, the Deep Thought polynomials are printed in human-readable form. This function is also called by the method of Display
for a DTObj
.
‣ DTP_pols2GAPpols ( DTObj ) | ( function ) |
Returns: list
Converts the Deep Thought polynomials stored in DTObj[PC_DTPPolynomials]
to GAP polynomials and returns them in a list together with their polynomial ring.
gap> coll := FromTheLeftCollector(4);; gap> SetConjugate(coll, 2, 1, [2, 1, 3, 2]); gap> SetConjugate(coll, 3, 1, [3, 1, 4, 1]); gap> SetConjugate(coll, 3, 2, [3, 1, 4, 5]); gap> UpdatePolycyclicCollector(coll); gap> DTObj := DTP_DTObjFromCollector(coll); <DTObj> gap> Display(DTObj); Polynomials f_rs for s = 1: f_1,s = X_1 + Y_1 f_2,s = X_2 f_3,s = X_3 + 2 * X_2 Y_1 f_4,s = X_4 + X_3 Y_1 + 2 * X_2 Binomial(Y_1, 2) + 10 * Binomial(X_2, 2) Y_1 Polynomials f_rs for s = 2: f_1,s = X_1 f_2,s = X_2 + Y_2 f_3,s = X_3 f_4,s = X_4 + 5 * X_3 Y_2 Polynomials f_rs for s = 3: f_1,s = X_1 f_2,s = X_2 f_3,s = X_3 + Y_3 f_4,s = X_4 Polynomials f_rs for s = 4: f_1,s = X_1 f_2,s = X_2 f_3,s = X_3 f_4,s = X_4 + Y_4 gap> DTObj := DTP_DTObjFromCollector(coll, false); <DTObj> gap> Display(DTObj); f_1 = X_1 + Y_1 f_2 = X_2 + Y_2 f_3 = X_3 + Y_3 + 2 * X_2 Y_1 f_4 = X_4 + Y_4 + X_3 Y_1 + 2 * X_2 Binomial(Y_1, 2) + 10 * Binomial(X_2, 2) Y_1 + 5 * X_3 Y_2 + 10 * X_2 Y_1 Y_2 gap> DTP_pols2GAPpols(DTObj); [ [ x1+y1, x2+y2, 2*x2*y1+x3+y3, 5*x2^2*y1+x2*y1^2+10*x2*y1*y2-6*x2*y1+x3*y1+5*x3*y2+x4+y4 ], Rationals[x1,x2,x3,x4,y1,y2,y3,y4] ]
generated by GAPDoc2HTML