rds : a GAP 4 package - Index

A B C D E F G H I L M N O P R S T V

A

A basic example 3.0
About this package 1.0
AbssquareInCyclotomics 9.4.3
Acknowledgements 1.1
AllDiffsets 4.4.1
AllDiffsets and OneDiffset 2.0
AllDiffsetsNoSort 4.4.2
AllElationsAx 8.2.3
AllElationsCentAx 8.2.2
AllPresentables 4.3.7
An Example Program 6.0
An invariant for large lambda 5.2

B

Basic functions for startset generation 4.3
Blackbox functions 5.3
Block Designs and Projective Planes 8.0
Brute force methods 4.4

C

CartesianIterator 9.2.1
Central Collineations 8.2
Change of coset vs. brute force 3.3
CoeffList2CyclotomicList 9.4.2
Collineations on Baer Subplanes 8.3
ConcatenationOfIterators 9.2.2
CosetSignatureOfSet 5.1.1
CosetSignatures 5.1.2
Cyclotomic numbers 9.4
CycsGivenCoeffSum 9.4.4

D

DataForQuotientImage 7.1.2
DebugRDS 1.3.2
Definition 7.3
Definitions and Objects 1.4
DevelopmentOfRDS 8.0

E

ElationByPair 8.2.1
ExtendedStartsets 4.3.9
ExtendedStartsetsNoSort 4.3.9

F

Filters and Categories 9.5
FingerprintAntiFlag 8.4.5
FingerprintProjPlane 8.4.4
First Step: Integers instead of group elements 3.1

G

General concepts 4.0
GroupList2PermList 4.3.4
GroupOfHomologies 8.2.6
Groups and actions 9.1

H

HomologyByPair 8.2.5
How partial difference sets are represented 4.2

I

IncidenceMatrix 8.4.2
InducedCollineation 8.3.1
InfoRDS 1.3.1
Installation 1.2
Introduction 4.1
Invariants for Difference Sets 5.0
Invariants for Projective Planes 8.4
IsCollineationOfProjectivePlane 8.1.2
IsComputableFilter 9.5.1
IsDiffset 4.3.2
IsIsomorphismOfProjectivePlanes 8.1.1
IsListOfIntegers 9.3.1
IsomorphismProjPlanesByGenerators 8.1.3
IsomorphismProjPlanesByGeneratorsNC 8.1.3
Isomorphisms and Collineations 8.1
IsPartialDiffset 4.3.3
IsRootOfUnity 9.4.1
IsTranslationPlane 8.2.4
Iterators 9.2

L

List2Tuples 9.3.2
Lists and Matrices 9.3

M

MatchingFGData 5.1.11
MatchingFGDataForOrderedSigs 7.1.4
MatchingFGDataNonGrp 5.1.10
MatTimesTransMat 9.3.3
MaxAutsizeForOrbitCalculation 5.1.13
Methods for calculating ordered signatures 7.4
MultiplicityInvariantLargeLambda 5.2.1

N

NewPresentables 4.3.6
NormalSgsForQuotientImages 7.1.1
NormalSgsHavingAtMostNSigs 5.3.2
NormalSubgroupsForRep 7.4.1
NrFanoPlanesAtPoints 8.4.1

O

OneDiffset 4.4.3
OneDiffsetNoSort 4.4.4
OnSubgroups 9.1.1
Ordered Signatures 7.0
Ordered signatures by quotient images 7.1
Ordered signatures using representations 7.2
OrderedSigInvariant 7.1.5
OrderedSignatureOfSet 7.4.3
OrderedSigs 7.4.2
OrderedSigsFromQuotientImages 7.1.3

P

PartitionByFunction 9.3.5
PartitionByFunctionNF 9.3.4
PermList2GroupList 4.3.5
PermutationRepForDiffsetCalculations 4.3.1
PointJoiningLinesProjectivePlane 8.0
PRank 8.4.3
ProjectiveClosureOfPointSet 8.0
ProjectivePlane 8.0

R

RDSFactorGroupData 5.1.9
ReducedStartsets 5.1.12
RemainingCompletions 4.3.8
RemainingCompletionsNoSort 4.3.8
RepsCClassesGivenOrder 9.1.2

S

SigInvariant 5.1.7
SignatureData 5.3.1
SignatureDataForNormalSubgroups 5.1.8
Signatures: An important tool 3.2
Some functions for everyday use 9.0
StartsetsInCoset 5.3.4
SuitableAutomorphismsForReduction 5.3.3

T

TestedSignatures 5.1.5
TestedSignaturesRelative 5.1.6
TestSignatureCyclicFactorGroup 5.1.4
TestSignatureLargeIndex 5.1.3
The Coset Signature 5.1

V

Verbosity 1.3

[Up]

rds manual
February 2022