rds : a GAP 4 package - Index
A
B
C
D
E
F
G
H
I
L
M
N
O
P
R
S
T
V
- A basic example 3.0
- About this package 1.0
- AbssquareInCyclotomics 9.4.3
- Acknowledgements 1.1
- AllDiffsets 4.4.1
- AllDiffsets and OneDiffset 2.0
- AllDiffsetsNoSort 4.4.2
- AllElationsAx 8.2.3
- AllElationsCentAx 8.2.2
- AllPresentables 4.3.7
- An Example Program 6.0
- An invariant for large lambda 5.2
- Basic functions for startset generation 4.3
- Blackbox functions 5.3
- Block Designs and Projective Planes 8.0
- Brute force methods 4.4
- CartesianIterator 9.2.1
- Central Collineations 8.2
- Change of coset vs. brute force 3.3
- CoeffList2CyclotomicList 9.4.2
- Collineations on Baer Subplanes 8.3
- ConcatenationOfIterators 9.2.2
- CosetSignatureOfSet 5.1.1
- CosetSignatures 5.1.2
- Cyclotomic numbers 9.4
- CycsGivenCoeffSum 9.4.4
- DataForQuotientImage 7.1.2
- DebugRDS 1.3.2
- Definition 7.3
- Definitions and Objects 1.4
- DevelopmentOfRDS 8.0
- ElationByPair 8.2.1
- ExtendedStartsets 4.3.9
- ExtendedStartsetsNoSort 4.3.9
- Filters and Categories 9.5
- FingerprintAntiFlag 8.4.5
- FingerprintProjPlane 8.4.4
- First Step: Integers instead of group elements 3.1
- General concepts 4.0
- GroupList2PermList 4.3.4
- GroupOfHomologies 8.2.6
- Groups and actions 9.1
- HomologyByPair 8.2.5
- How partial difference sets are represented 4.2
- IncidenceMatrix 8.4.2
- InducedCollineation 8.3.1
- InfoRDS 1.3.1
- Installation 1.2
- Introduction 4.1
- Invariants for Difference Sets 5.0
- Invariants for Projective Planes 8.4
- IsCollineationOfProjectivePlane 8.1.2
- IsComputableFilter 9.5.1
- IsDiffset 4.3.2
- IsIsomorphismOfProjectivePlanes 8.1.1
- IsListOfIntegers 9.3.1
- IsomorphismProjPlanesByGenerators 8.1.3
- IsomorphismProjPlanesByGeneratorsNC 8.1.3
- Isomorphisms and Collineations 8.1
- IsPartialDiffset 4.3.3
- IsRootOfUnity 9.4.1
- IsTranslationPlane 8.2.4
- Iterators 9.2
- List2Tuples 9.3.2
- Lists and Matrices 9.3
- MatchingFGData 5.1.11
- MatchingFGDataForOrderedSigs 7.1.4
- MatchingFGDataNonGrp 5.1.10
- MatTimesTransMat 9.3.3
- MaxAutsizeForOrbitCalculation 5.1.13
- Methods for calculating ordered signatures 7.4
- MultiplicityInvariantLargeLambda 5.2.1
- NewPresentables 4.3.6
- NormalSgsForQuotientImages 7.1.1
- NormalSgsHavingAtMostNSigs 5.3.2
- NormalSubgroupsForRep 7.4.1
- NrFanoPlanesAtPoints 8.4.1
- OneDiffset 4.4.3
- OneDiffsetNoSort 4.4.4
- OnSubgroups 9.1.1
- Ordered Signatures 7.0
- Ordered signatures by quotient images 7.1
- Ordered signatures using representations 7.2
- OrderedSigInvariant 7.1.5
- OrderedSignatureOfSet 7.4.3
- OrderedSigs 7.4.2
- OrderedSigsFromQuotientImages 7.1.3
- PartitionByFunction 9.3.5
- PartitionByFunctionNF 9.3.4
- PermList2GroupList 4.3.5
- PermutationRepForDiffsetCalculations 4.3.1
- PointJoiningLinesProjectivePlane 8.0
- PRank 8.4.3
- ProjectiveClosureOfPointSet 8.0
- ProjectivePlane 8.0
- RDSFactorGroupData 5.1.9
- ReducedStartsets 5.1.12
- RemainingCompletions 4.3.8
- RemainingCompletionsNoSort 4.3.8
- RepsCClassesGivenOrder 9.1.2
- SigInvariant 5.1.7
- SignatureData 5.3.1
- SignatureDataForNormalSubgroups 5.1.8
- Signatures: An important tool 3.2
- Some functions for everyday use 9.0
- StartsetsInCoset 5.3.4
- SuitableAutomorphismsForReduction 5.3.3
- TestedSignatures 5.1.5
- TestedSignaturesRelative 5.1.6
- TestSignatureCyclicFactorGroup 5.1.4
- TestSignatureLargeIndex 5.1.3
- The Coset Signature 5.1
- Verbosity 1.3
[Up]
rds manual
February 2022