ModIsom : a GAP 4 package - Index

A B C D E G I J K M N R S T

A

A Library of Kurosh Algebras 6.2
A nilpotent quotient algorithm 1.4
AlgebraByTable 2.2.1
Algebras in the GAP sense 2.2
Associative algebras and nilpotency 1.1
AutGroupOfRad 3.1.1
AutGroupOfTable 3.1.1
Automorphism groups 3.1
Automorphism groups and Canonical Forms 3.0

B

BaginskiCarantiInfo 4.3.7
BaginskiInfo 4.3.6
BinsByGT 4.1.1
BinsByGTAllFields 4.1.4

C

CanoFormWithAutGroupOfRad 3.2.2
CanoFormWithAutGroupOfTable 3.2.2
Canonical forms 3.2
CanonicalFormOfRad 3.2.1
CanonicalFormOfTable 3.2.1
CanonicalNormalSubgroups 4.3.13
CenterDerivedInfo 4.3.2
CheckAssociativity 2.1.4
CheckCommutativity 2.1.5
CheckConsistency 2.1.6
CompareTables 2.1.3
Computing bins and checking bins 4.1
Computing Kurosh Algebras 6.1
Computing nilpotent quotients 5.1
ConjugacyClassInfo 4.3.17
CyclicDerivedInfo 4.3.10

D

DimensionTwoCohomology 4.3.16

E

Example of accessing the library of Kurosh algebras 6.3
Example of canonical form computation 3.3
Example of nilpotent quotient computation 5.2
ExpandExponentLaw 6.1.2

G

GetEntryTable 2.1.1
GroupInfo 4.3.1

I

Introduction 1.0
IsCoveredByTheory 4.3.15
Isomorphisms and Automorphisms 1.2

J

JenningsDerivedInfo 4.3.5
JenningsInfo 4.3.4

K

Kernel size 4.2
KernelSizePowerMap 4.2.1
Kurosh Algebras 1.5
KuroshAlgebra 6.1.1
KuroshAlgebraByLib 6.2.1

M

MaximalAbelianDirectFactor 4.3.11
MIPBinSplit 4.1.8
MIPElementAlgebraToTable 2.3.4
MIPElementTableToAlgebra 2.3.3
MIPSplitGroupsByAlgebras 4.1.7
MIPSplitGroupsByGroupTheoreticalInvariants 4.1.2
MIPSplitGroupsByGroupTheoreticalInvariantsAllFields 4.1.5
MIPSplitGroupsByGroupTheoreticalInvariantsAllFieldsNoCohomology 4.1.6
MIPSplitGroupsByGroupTheoreticalInvariantsNoCohomology 4.1.3
ModIsomTable 2.3.2
MultByTable 2.1.2

N

NilpotencyClassInfo 4.3.8
Nilpotent Quotients 5.0
Nilpotent tables 2.1
NilpotentQuotientOfFpAlgebra 5.1.1
NilpotentTable 2.2.1
NilpotentTableOfRad 2.2.2
NormalSubgroupsInfo 4.3.14

R

Relatively free Algebras 6.0

S

SandlingInfo 4.3.3
SubgroupsInfo 4.3.18
SuccessorsN 4.3.12

T

TableOfRadQuotient 2.3.1
Tables 2.0
Tables for the Modular Isomorphism Problem 2.3
The group theoretical invariants 4.3
The modular isomorphism problem 4.0
The Modular Isomorphism Problem (MIP) 1.3
Theorem41MS22 4.3.9

[Up]

ModIsom manual
January 2026