ModIsom : a GAP 4 package - References

[Bag92]
C. Bagiński.
Modular group algebras of 2-groups of maximal class.
Comm. Algebra, 20(5):1229--1241, 1992.
[Bag99]
C. Bagiński.
On the isomorphism problem for modular group algebras of elementary abelian-by-cyclic p-groups.
Colloq. Math., 82(1):125--136, 1999.
[BC88]
C. Bagiński and A. Caranti.
The modular group algebras of p-groups of maximal class.
Canad. J. Math., 40(6):1422--1435, 1988.
[BdR21]
O. Broche and Á. del Río.
The modular isomorphism problem for two generated groups of class two.
Indian J. Pure Appl. Math., 52(3):721--728, 2021.
[BK07]
C. Bagiński and A. Konovalov.
The modular isomorphism problem for finite p-groups with a cyclic subgroup of index p2.
In Groups St. Andrews 2005. Vol. 1, volume 339 of London Math. Soc. Lecture Note Ser., pages 186--193. Cambridge Univ. Press, Cambridge, 2007.
[BKRW99]
F. Bleher, W. Kimmerle, K. W. Roggenkamp, and M. Wursthorn.
Computational aspects of the isomorphism problem.
In Algorithmic algebra and number theory (Heidelberg, 1997), pages 313--329. Springer, Berlin, 1999.
[Dre89]
V. Drensky.
The isomorphism problem for modular group algebras of groups with large centres.
In Representation theory, group rings, and coding theory, volume 93 of Contemp. Math., pages 145--153. Amer. Math. Soc., Providence, RI, 1989.
[Eic07]
B. Eick.
Computing automorphism groups and testing isomorphisms for modular group algebras.
J. Algebra, 320(11):3895--3910, 2008.
[Eic11]
B. Eick.
Computing nilpotent quotients of associative algebras and algebras satisfying a polynomial identity.
Internat. J. Algebra Comput., 21(8):1339--1355, 2011.
[EKo11]
B. Eick and A. Konovalov.
The modular isomorphism problem for the groups of order 512.
In Groups St Andrews 2009 in Bath. Volume 2, volume 388 of London Math. Soc. Lecture Note Ser., pages 375--383. Cambridge Univ. Press, Cambridge, 2011.
[GL24]
D. García-Lucas.
The modular isomorphism problem and abelian direct factors.
Meditt. J. of Math., 21:Article no. 18, 2024.
[GLdR23]
D. García-Lucas and Á. del Río.
On the modular isomorphism problem for 2-generated groups with cyclic derived subgroup.
J. Alg. App., 2024.
https://doi.org/10.1142/S0219498825503311.
[GLdRS22]
Diego García-Lucas, Ángel del Río, and Mima Stanojkovski.
On group invariants determined by modular group algebras: even versus odd characteristic.
Algebr. Represent. Theory, 26(6):2683--2707, 2023.
[GLM24]
D. García-Lucas and L. Margolis.
On the modular isomorphism problem for groups of nilpotency class 2 with cyclic center.
Forum Math., 36(5):1321--1340, 2024.
[GLMdR22]
D. García-Lucas, L. Margolis, and Á. del Río.
Non-isomorphic 2-groups with isomorphic modular group algebras.
J. Reine Angew. Math., 783:269--274, 2022.
[Her07]
M. Hertweck.
A note on the modular group algebras of odd p-groups of M-length three.
Publ. Math. Debrecen, 71(1-2):83--93, 2007.
[HS06]
M. Hertweck and M. Soriano.
On the modular isomorphism problem: groups of order 26.
In Groups, rings and algebras, volume 420 of Contemp. Math., pages 177--213. Amer. Math. Soc., Providence, RI, 2006.
[Jen41]
S. A. Jennings.
The structure of the group ring of a p-group over a modular field.
Trans. Amer. Math. Soc., 50:175--185, 1941.
[MM22]
L. Margolis and T. Moede.
The Modular Isomorphism Problem for small groups -- revisiting Eick's algorithm.
Journal of Computational Algebra, 1-2:100001, 2022.
[MS22]
L. Margolis and M. Stanojkovski.
On the modular isomorphism problem for groups of class 3 and obelisks.
J. Group Theory, 25(1):163--206, 2022.
[MSS23]
L. Margolis, T. Sakurai, and M. Stanojkovski.
Abelian invariants and a reduction theorem for the modular isomorphism problem.
J. Algebra, 636:1--27, 2023.
[PS72]
I. B. S. Passi and S. K. Sehgal.
Isomorphism of modular group algebras.
Math. Z., 129:65--73, 1972.
[RS83]
J. Ritter and S. K. Sehgal.
Isomorphism of group rings.
Arch. Math. (Basel), 40(1):32--39, 1983.
[RS93]
K. W. Roggenkamp and L. L. Scott.
Automorphisms and nonabelian cohomology: an algorithm.
Linear Algebra Appl., 192:355--382, 1993.
[San85]
R. Sandling.
The isomorphism problem for group rings: a survey.
In Orders and their applications (Oberwolfach, 1984), pages 256--288. Springer, Berlin, 1985.
[San89]
R. Sandling.
The modular group algebra of a central-elementary-by-abelian p-group.
Arch. Math. (Basel), 52(1):22--27, 1989.
[Wur93]
M. Wursthorn.
Isomorphisms of modular group algebras: an algorithm and its application to groups of order 2\sp 6.
J. Symbolic Comput., 15(2):211--227, 1993.

[Up]

ModIsom manual
September 2024