ModIsom : a GAP 4 package - References
- [Bag92]
-
C. Bagiński.
Modular group algebras of 2-groups of maximal class.
Comm. Algebra, 20(5):1229--1241, 1992.
- [Bag99]
-
C. Bagiński.
On the isomorphism problem for modular group algebras of elementary
abelian-by-cyclic p-groups.
Colloq. Math., 82(1):125--136, 1999.
- [BC88]
-
C. Bagiński and A. Caranti.
The modular group algebras of p-groups of maximal class.
Canad. J. Math., 40(6):1422--1435, 1988.
- [BdR21]
-
O. Broche and Á. del Río.
The modular isomorphism problem for two generated groups of class
two.
Indian J. Pure Appl. Math., 52(3):721--728, 2021.
- [BK07]
-
C. Bagiński and A. Konovalov.
The modular isomorphism problem for finite p-groups with a cyclic
subgroup of index p2.
In Groups St. Andrews 2005. Vol. 1, volume 339 of
London Math. Soc. Lecture Note Ser., pages 186--193. Cambridge Univ. Press,
Cambridge, 2007.
- [BKRW99]
-
F. Bleher, W. Kimmerle, K. W. Roggenkamp, and M. Wursthorn.
Computational aspects of the isomorphism problem.
In Algorithmic algebra and number theory (Heidelberg, 1997),
pages 313--329. Springer, Berlin, 1999.
- [Dre89]
-
V. Drensky.
The isomorphism problem for modular group algebras of groups with
large centres.
In Representation theory, group rings, and coding theory,
volume 93 of Contemp. Math., pages 145--153. Amer. Math. Soc.,
Providence, RI, 1989.
- [Eic07]
-
B. Eick.
Computing automorphism groups and testing isomorphisms for modular
group algebras.
J. Algebra, 320(11):3895--3910, 2008.
- [Eic11]
-
B. Eick.
Computing nilpotent quotients of associative algebras and algebras
satisfying a polynomial identity.
Internat. J. Algebra Comput., 21(8):1339--1355, 2011.
- [EKo11]
-
B. Eick and A. Konovalov.
The modular isomorphism problem for the groups of order 512.
In Groups St Andrews 2009 in Bath. Volume 2, volume 388
of London Math. Soc. Lecture Note Ser., pages 375--383. Cambridge Univ.
Press, Cambridge, 2011.
- [GL24]
-
D. García-Lucas.
The modular isomorphism problem and abelian direct factors.
Meditt. J. of Math., 21:Article no. 18, 2024.
- [GLdR23]
-
D. García-Lucas and Á. del Río.
On the modular isomorphism problem for 2-generated groups with cyclic
derived subgroup.
J. Alg. App., 2024.
https://doi.org/10.1142/S0219498825503311.
- [GLdRS22]
-
Diego García-Lucas, Ángel del Río, and Mima Stanojkovski.
On group invariants determined by modular group algebras: even versus
odd characteristic.
Algebr. Represent. Theory, 26(6):2683--2707, 2023.
- [GLM24]
-
D. García-Lucas and L. Margolis.
On the modular isomorphism problem for groups of nilpotency class 2
with cyclic center.
Forum Math., 36(5):1321--1340, 2024.
- [GLMdR22]
-
D. García-Lucas, L. Margolis, and Á. del Río.
Non-isomorphic 2-groups with isomorphic modular group algebras.
J. Reine Angew. Math., 783:269--274, 2022.
- [Her07]
-
M. Hertweck.
A note on the modular group algebras of odd p-groups of
M-length three.
Publ. Math. Debrecen, 71(1-2):83--93, 2007.
- [HS06]
-
M. Hertweck and M. Soriano.
On the modular isomorphism problem: groups of order 26.
In Groups, rings and algebras, volume 420 of Contemp.
Math., pages 177--213. Amer. Math. Soc., Providence, RI, 2006.
- [Jen41]
-
S. A. Jennings.
The structure of the group ring of a p-group over a modular
field.
Trans. Amer. Math. Soc., 50:175--185, 1941.
- [MM22]
-
L. Margolis and T. Moede.
The Modular Isomorphism Problem for small groups -- revisiting
Eick's algorithm.
Journal of Computational Algebra, 1-2:100001, 2022.
- [MS22]
-
L. Margolis and M. Stanojkovski.
On the modular isomorphism problem for groups of class 3 and
obelisks.
J. Group Theory, 25(1):163--206, 2022.
- [MSS23]
-
L. Margolis, T. Sakurai, and M. Stanojkovski.
Abelian invariants and a reduction theorem for the modular
isomorphism problem.
J. Algebra, 636:1--27, 2023.
- [PS72]
-
I. B. S. Passi and S. K. Sehgal.
Isomorphism of modular group algebras.
Math. Z., 129:65--73, 1972.
- [RS83]
-
J. Ritter and S. K. Sehgal.
Isomorphism of group rings.
Arch. Math. (Basel), 40(1):32--39, 1983.
- [RS93]
-
K. W. Roggenkamp and L. L. Scott.
Automorphisms and nonabelian cohomology: an algorithm.
Linear Algebra Appl., 192:355--382, 1993.
- [San85]
-
R. Sandling.
The isomorphism problem for group rings: a survey.
In Orders and their applications (Oberwolfach, 1984), pages
256--288. Springer, Berlin, 1985.
- [San89]
-
R. Sandling.
The modular group algebra of a central-elementary-by-abelian
p-group.
Arch. Math. (Basel), 52(1):22--27, 1989.
- [Wur93]
-
M. Wursthorn.
Isomorphisms of modular group algebras: an algorithm and its
application to groups of order 2\sp 6.
J. Symbolic Comput., 15(2):211--227, 1993.
[Up]
ModIsom manual
September 2024