Simple polytopes for three-dimensional isometry groups

x

y

x

 $G = A_4$, rotations of a tetrahedron, generated by rota- $\operatorname{Dim}(P) = 3.$ $G \cong \{x, y : x^3 = y^2 = (xy)^3 = 1\}.$

Figure 5. $G = D_n$ (n = 3), rotations of an *n*-prism, generated by rotations x, y. $\mathrm{Dim}(P) = 3. \quad G \cong \{x, y : x^n = y^2 = (xy)^2 = 1\}.$

Figure 6. $G = D_n C_n$

 $G = D_n C_n$ (n = 4), symmetries of an *n*-prism with different coloured ends, generated by reflections x, y. Dim(P(G)) = 2. $G \cong \{x, y : x^2 = y^2 = (xy)^n = 1\}.$

Figure 8. $G = S_4 \times \langle J \rangle$, symmetries of a cube, generated by reflections x, y, z. Dim(P(G)) = 3. $G \cong \{x, y, z : x^2 = y^2 = z^2 = (xy)^3 = (yz)^4 = (xz)^2 = 1\}.$

Figure 9.

 $G = A_5 \times \langle J \rangle$, symmetries of an icosahedron, generated by reflections x, y, z. Dim(P(G)) = 3. $G \cong \{x, y, z : x^2 = y^2 = z^2 = (xy)^3 = (yz)^5 = (xz)^2 = 1\}$.

Figure 10. $G = D_n \times \langle J \rangle \ (n = 3)$, generated by reflections x, y, z. Dim(P(G)) = 3. $G \cong \{x, y, z : x^2 = y^2 = z^2 = (xy)^n = (xz)^2 = (yz)^2 = 1\}.$

Figure 11. $G = A_4 \times \langle J \rangle$, generated by a rotation x and reflection y. Dim(P) = 3. $G \cong \{x, y : x^3 = y^2 = (xyx^{-1}y)^2 = 1\}.$

Figure 12. $G = C_n \times \langle J \rangle$ (n = 3), generated by a rotation x and reflection y. Dim(P) = 3. $G \cong \{x, y : x^n = y^2 = xyx^{-1}y = 1\}$