
04/17/2007

PARTITION BACKTRACK PROGRAMS:

USER’S MANUAL

JEFFREY S. LEON

Mathmatics Dept, m/c 249
University of Illinois at Chicago

Box 4348
Chicago, IL 60680

I. INTRODUCTION

This document describes a collection of programs for permutation group computations em-
ploying the partition backtrack method, as described in a recent article by the author (Leon,
1991). At present, these programs perform the following computations:

set stabilizers, set images (see below),

ordered partition stabilizers, ordered partition images,

intersections,

centralizers (of elements), conjugacy (of elements),

centralizers (of subgroups),

automorphism groups of designs, isomorphism of designs,

automorphism groups of matrices, isomorphism of matrices,

monomial automorphism groups of monomial isomorphism of matrices
matrices over small fields, over small fields,

automorphism groups of linear codes, isomorphism of linear codes.

The term set image problem is used here to refer to the following problem: Given a permu-
tation group G and subsets Λ and Φ of the domain, determine if there exists g ∈ G such
that Λg = Φ. The ordered partition image problem is defined analogously. The term design

is used here to refer to any collection of points and blocks. An automorphism of a matrix
is any permutation of the rows and columns that leaves the matrix invariant; two matrices
are isomorphic if one may be transformed to the other by permutation of rows and columns.
For monomial automorphism groups and monomial isomorphism, the matrix entries must
be taken from a finite field; in addition to permutation of rows and columns, we allow each
row and each column to be multiplied by a nonzero field element.

Note that each of the problems in the first column above involves computation of a subgroup;
these problems will be referred to as subgroup computations. For each problem in the second
column, the set of permutations having the desired property either is empty or forms a right
coset of an appropriate subgroup; we are seeking one coset representative (if it exists). These
problems will be referred to as coset representative computations.

1

04/17/2007

Some of the programs described here can be used to compute in groups of relatively high
degree, considerably higher than those that can be handled by programs based on con-
ventional algorithms. However, it should be kept mind that the programs are new. All
appear to work correctly, but most have not been thoroughly tested, especially on intransi-
tive groups. (The set stabilizer program has been tested the most thoroughly, and in general
those for subgroup computations have received more testing than those for coset represen-
tative calculations.) The author would appreciate any reports of errors; they may be sent to
leon@turing.math.uic.edu.

Work on programs for the following computations is in progress:

unordered partition stabilizers, unordered partition images,

normalizers, conjugacy (of subgroups),

coset intersections,

In the course of constructing test cases for the partition backtrack programs and verifying
their output, the author has developed several other programs, not based on backtrack
search. These programs are described briefly in Section IX. Many of these programs were
put together quickly, with a view toward simplicity rather than efficiency and ease of use.

At present, the programs run on the following machines: The Sun/3, the Sun/4, the
IBM 3090, and the IBM PC. Two versions are available for the IBM PC: a standard version,
which is limited to groups of degree no more than 1000 (roughly) due to the 640K memory
limitation, and a 386/486 version using a DOS extender, that can handle larger groups.
The source code for all programs is written entirely in C and, with very minor exceptions,
conforms to the ANSI standard. The programs should compile, with minimal changes, with
any C compiler fully supporting the ANSI standard. The Sun/3 and Sun/4 versions have
been compiled with the GNU C compiler, the IBM 3090 version with the Waterloo C com-
piler, and the IBM/PC versions with the Borland C++ and Zortech C++ compilers (both
configured as C compilers).

II. OBJECTS AND FILE FORMATS

At present, the programs compute with objects of seven types: Permutation groups, per-
mutations, point sets, partitions (ordered or unordered), block designs, matrices, and linear
codes. Each object used as input by the programs is read from a file. Likewise, each object
constructed by the programs is written to a file. All of these files are ordinary text files.
The format of the files is designed for compatibility with Cayley (Cannon, 1984); it is that
of a Cayley library, with certain restrictions added. Essentially, the restrictions say that the
library may contain only statements defining the object, and (at present) that only certain
attributes of the object may specified in the library. (Many of the permutation group li-
braries distributed with Cayley conform to these restrictions.) Thus objects constructed by
these programs described here may be read into Cayley for further investigation. Likewise,
objects defined in existing Cayley libraries may, in many cases, be used as input to the
programs described here. An alternative format, compatible with Gap, may be added at a
later date.

2

04/17/2007

The examples which follow illustrate the correct format for these object files. Note that the
contents of the files is case–insensitive; upper and lower case letters may be used interchange-
ably. (However, the names of the files may be case–sensitive, depending on the operating
system.) Also, the use of white space (blanks, tabs, newline characters) is optional: Ex-
cept within integers and identifiers, any number of whitespace characters may occur. Text
enclosed by ampersands or quotation marks is treated as a comment.

a) Permutation groups: The format for permutation group files is illustrated by follow-
ing file, named psp62, which defines PSp6(2) as a permutation group on nonzero vectors
(degree 63).

LIBRARY psp62;

" PSp(6,2) acting on nonzero vectors, degree 63."

psp62: permutation group(63);

psp62.forder: 2^9 * 3^4 * 5 * 7;

psp62.generators:

a = (1,2)(3,5)(4,7)(8,12)(11,16)(13,19)(17,18)(20,26)(21,28)(23,30)(24,32)

(25,34)(29,37)(31,40)(33,43)(36,46)(38,41)(39,49)(42,44)(45,52)(48,51)

(53,58)(57,62)(59,61),

b = (1,3,6,10,15,22)(2,4,8,13,20,27)(5,9,14,21,29,38)(7,11,17,23,31,41)

(12,18,24,33,44,34)(16,19,25)(26,35,45,53,32,42)(28,36,47)(30,39,50,

56,61,58)(37,48)(40,51,46,54,59,62)(49,55,60,63,52,57);

FINISH;

The line specifying the factored group order may be omitted; however, since the random
Schreier method is currently used to construct a base and strong generating set for the
group, there is a possibility (probably small) that the group may be generated incorrectly
if this line is removed. When generators are written in cycle format, as above, inclusion of
cycles of length one is optional. (For compatibility with Cayley, they should be omitted.) It
is also possible to write the generators in image (rather than cycle) format; in this case, the
file shown above would become:

LIBRARY psp62;

" PSp(6,2) acting on nonzero vectors, degree 63."

psp62: permutation group(63);

psp62.forder: 2^9 * 3^4 * 5 * 7;

psp62.generators:

a = /2,1,5,7,3,6,4,12,9,10,16,8,19,14,15,11,18,17,13,26,28,22,30,

32,34,20,27,21,37,23,40,24,43,25,35,46,29,41,49,31,38,44,33,42,

52,36,47,51,39,50,48,45,58,54,55,56,62,53,61,60,59,57,63/,

b = /3,4,6,8,9,10,11,13,14,15,17,18,20,21,22,19,23,24,25,27,29,1,

31,33,16,35,2,36,38,39,41,42,44,12,45,47,48,5,50,51,7,26,43,34,

53,54,28,37,55,56,46,57,32,59,60,61,49,30,62,63,58,40,52/;

FINISH;

3

04/17/2007

Finally, if a base and strong generating set for the group are already known, they may be
included in the file. This eliminates the need for the programs to first construct a base and
strong generating set for the input group. The file format is then as follows.

LIBRARY psp62;

" PSp(6,2) acting on nonzero vectors, degree 63."

psp62: permutation group(63);

psp62.forder: 2^9 * 3^4 * 5 * 7;

psp62.base: seq(1,3,6,2,4,5);

psp62.strong generators: [

x01 = (1,3)(4,27)(5,9)(7,45)(10,48)(11,17)(12,34)(13,20)(14,25)(15,

39)(16,63)(19,60)(21,55)(22,58)(23,28)(24,37)(31,53)(32,47)(33,

61)(36,42)(38,49)(44,50)(51,62)(54,59),

x02 = (2,16)(3,6)(5,55)(8,21)(9,40)(13,51)(14,46)(15,47)(17,44)(19,

59)(20,29)(22,36)(23,58)(24,61)(25,63)(26,37)(27,60)(31,50)(32,

48)(33,41)(34,56)(38,57)(43,45)(52,62),

.

.

x12 = (5,51)(7,12)(8,29)(9,62)(10,42)(13,55)(15,23)(18,35)(20,21)

(22,32)(28,39)(34,45)(36,48)(40,52)(43,56)(47,58)];

FINISH;

(The vertical dots indicated that part of the file has been omitted.) When a base and strong
generating set are given, inclusion of the factored order of the group is purely optional. At
present it is not possible to specify both generators and a base and strong generating set for
a group. (This obviously undesirable restriction will be removed eventually.)

b) Permutations: The format for permutation files is illustrated by following file, named
g, which defines a permutation of g of degree 63 and order 4, which turns out to lie in the
group PSp6(2) given above.

LIBRARY g;

" An element of order 4 in the group psp62 above."

g = (1,40,50,6)(2,58,18,34)(3,8,44,30)(4,10,15,48)(5,11)(7,60,38,32)

(12,46,22,56)(13,62,20,61)(16,42,36,63)(19,49,47,45)(21,53,31,

55)(24,33,37,51)(25,28)(26,52)(27,59,39,54)(29,41);

FINISH;

As with generators for permutation groups, permutations may be written in image format,
rather than cycle format. Note that, when cycle format is used, the file contains no explicit
indication of the degree of the permutation. Thus, for example, the permutation g above
could be used wherever a permutation of degree 63 (the largest point appearing explicitly)
or greater is expected.

Given the files above, the centralizer in PSp6(2) of g could be computed by the command

cent psp62 g C

which would save the centralizer (in the format described in part (a) above) in the file C.

4

04/17/2007

c) Point sets: The format for point sets is illustrated by following file, named lambda,
which defines a subset Λ of {1, . . . , 63}.

LIBRARY lambda;

" A subset of 1,...,63 of size 31."

lambda = [10,16,44,3,5,33,48,63,56,50,6,52,55,19,34,25,2,35,17,40,21,

58,49,36,39,12,60,30,15,29,37];

FINISH;

Note that there is no explicit indication of the size of the base set. Thus the set lambda

above could be used wherever a subset of {1, . . . ,m} is expected for any m with m ≥ 63
(the largest point appearing explicitly).

The set stabilizer in PSp6(2) of Λ could be computed by the command

setstab psp62 lambda S

which would save the stabilizer in the file S.

d) Partitions: The format for partitions (ordered or unordered) is illustrated by following
file, named pi, which defines a partition Π of {1, . . . , 63}.

LIBRARY pi;

" An (ordered or unordered) partition of 1,...,63 having four "

" cells of sizes 15, 20, 13, and 15. respectively."

pi = seq([1,34,28,48,37,41,13,54,57,51,4,38,8,46,16],[2,40,21,

18,6,53,30,56,42,12,3,11,33,15,32,5,60,31,55,63],[7,

36,25,29,35,9,26,49,14,47,10,24,43],[17,58,52,50,59,

45,20,61,23,39,44,19,22,62,27]);

FINISH;

Note that the individual cells are delimited by square brackets. Note also that the file
contains no indication whether the partition is ordered or unordered; rather each program
operating on partitions interprets the partition as ordered or unordered, whichever is appro-
priate for the the program.

The stabilizer in PSp6(2) of Π, interpreted as an ordered partition, could be computed by
the command

parstab psp62 pi T

which saves the stabilizer in the file T.

e) Block designs: Here a block design refers to any collection of subsets of {1, . . . , n}; it
is even possible to have repeated blocks, i.e., two different blocks containing exactly the same
points. (If repeated blocks occur, we require that an automorphism preserve multiplicities.)
The file format for block designs is illustrated by following file, named d17, which defines a
block design D17 with 17 points and with 34 blocks, each of size 5.

5

04/17/2007

LIBRARY d17;

" The design with 17 points and 34 blocks, each containing "

" 5 points, obtained from the codewords of weight 5 in the "

" quadratic residue code of length 17 and dimension 9."

d17 = seq(17, 34,

[3,6,8,15,17], [1,4,7,9,16], [1,4,5,11,17],

[2,5,8,10,17], [3,4,7,8,14], [1,2,5,6,12],

[1,4,6,13,15], [1,3,6,9,11], [1,3,10,12,15],

[3,5,8,11,13], [2,8,9,12,13], [1,7,13,14,17],

[6,8,11,14,16], [4,5,8,9,15], [2,5,7,14,16],

[2,3,6,7,13], [3,4,10,16,17], [3,5,12,14,17],

[1,7,8,11,12], [5,7,10,13,15], [6,12,13,16,17],

[2,4,7,10,12], [2,9,11,14,17], [2,3,9,15,16],

[2,4,11,13,16], [6,7,10,11,17], [4,6,9,12,14],

[5,11,12,15,16], [1,8,10,13,16], [1,2,8,14,15],

[5,6,9,10,16], [4,10,11,14,15], [7,9,12,15,17],

[3,9,10,13,14]);

FINISH;

Note that the file contains the number of points, followed by the number of blocks, followed
by a listing of the blocks. Each block is delimited by square brackets.

The automorphism group of this block design could be computed by the command

desauto d17 A

which saves the automorphism group in the file A.

f) Matrices: Here a matrix is merely a k×n array of integers, each in the set {0, . . . , q−1}
for some k, n, and q. (At present, q cannot exceed 256; this limit could be raised, at the
cost of additional space, by minor changes to the source code.) The file format for matrices
is illustrated by following file, named m17, which represents incidence matrix M17 for the
block design D17 in part (e) above. (In the incidence matrix, rows correspond to points and
columns to blocks.)

6

04/17/2007

LIBRARY m17;

" The incidence matrix of d17."

m17 = seq(2, 17, 34, seq(

0,1,1,0,0,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,

0,0,0,1,0,1,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1,0,0,0,0,

1,0,0,0,1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,

0,1,1,0,1,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0,

0,0,1,1,0,1,0,0,0,1,0,0,0,1,1,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,

1,0,0,0,0,1,1,1,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,1,0,0,0,

0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,1,0,0,1,1,0,1,0,0,0,1,0,0,0,0,0,0,1,0,

1,0,0,1,1,0,0,0,0,1,1,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,

0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,1,0,1,1,

0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,1,0,0,1,0,1,1,0,1,

0,0,1,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,1,0,0,0,1,0,1,1,0,1,0,0,0,1,0,0,

0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,1,1,0,0,0,0,1,0,

0,0,0,0,0,0,1,0,0,1,1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,

0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,1,

1,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,1,1,0,

0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,1,1,0,0,1,1,0,1,0,0,0,

1,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0

));

FINISH;

Note that the file contains the set size q, followed by the number k of rows, followed by the
number n of columns, followed by the entries of the matrix listed in row–major order. Note
that matrix entries are not, in general, limited to 0 and 1; if q is the set size, matrix entries
may be integers in the range 0 through q − 1.

The automorphism group of this matrix could be computed by the command

matauto m17 B

which saves the automorphism group in the file B.

Matrices may also be specified using an alternate format, which is not compatible with

Cayley, but which saves considerable space for large matrices.† This alternate format is
available only when the set size q is at most 9. Using the alternate format, the matrix M17

would be specified by a file as follows:

† At time of writing, the alternate format does not work correctly on some machines.

7

04/17/2007

m17

2 17 34

0110011110010000001000000000110000

0001010000100011000001111000010000

1000100111000001110000010000000001

0110101000000100100001001010000100

0011010001000110010100000001001000

1000011100001001000010000110001000

0100100000010011001101000100000010

1001100001101100001000000000110000

0100000100100100000000110010001011

0001000010000000100101000100101101

0010000101001000001000101101000100

0000010010100000011011000011000010

0000001001110001000110001000100001

0000100000011010010000100010010101

1000001010000100000100010001010110

0100000000001010100010011001101000

1011000000010000110010100100000010

With the alternate format, blanks may occur between matrix entries, but are not required.
The first line of the file is reserved for the matrix name; nothing else may be placed on this
line.

g) Linear codes: The file format for lines codes is illustrated by following file, named q17,
which represents the binary (17,9)–quadratic residue code Q17 mentioned in part (e) above.
This file gives a generator matrix for the code, in the format of part (f) above.

LIBRARY q17;

" The (17,9) binary quadratic residue code."

q17 = seq(2, 9, 17, seq(

1,1,1,0,1,0,0,0,1,1,0,0,0,1,0,1,1,

1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,0,1,

1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,0,

0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,

1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,0,

0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,0,

0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,0,

0,0,0,1,0,1,1,1,1,1,0,1,0,0,0,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

));

FINISH;

Note that the file contains the size of the field for the code, followed by the dimension of the
code, followed by the length of the code, followed by a generator matrix whose entries are
listed in row–major order. At present, the field size is restricted to a prime integer (less than
255) or to 4; automorphism group and isomorphism calculations are practical only when the
field size is quite small. In the case of a prime, the field is taken as the integers modulo that
prime.

8

04/17/2007

The automorphism group of this code could be computed by the command

codeauto q17 v17 H

which saves the automorphism group as the group H. (Here file v17 defines a matrix V17
which is the transpose of the matrix M17 of part (f) above; the role of V17 will be explained
later.)

As with matrices, an alternate (not Cayley–compatible) format is provided for codes over

field of size at most 9.† With the alternate format, the file defining the code Q17 would be
as follows:

q17

2 9 17

11101000110001011

11110100011000101

11111010001100010

01111101000110001

10111110100011000

01011111010001100

00101111101000110

00010111110100011

11111111111111111

In the examples above, it was assumed that the name of file matched the name of the
Cayley library that it contained. Although this is recommended for simplicity, it need
not be the case. When the names do not match, an object is specified using the format
fileName::libraryName. For example, if the file psp62 in part (a) above were renamed psp

and the file g in part (b) were named pspx4, but if the contents of both files remained
unchanged, the command to compute the centralizer in PSp6(2) of g might be

cent psp::psp62 pspx4::g gCentr::C

where now the centralizer is saved in the file gCentr, but in a Cayley library named C. A
path may also be specified, for example,

cent ../groups/psp::psp62 ../groups/pspx4::g gCentr::C

in Unix. (In MS DOS on the IBM PC, the forward slash must be replaced by a backslash.
Under CMS on the IBM 370, the file name and file type must be separated by a period,
rather than the blank normally used under CMS.) If however, the file name and the library
name for input files differ only in that the file name contains path information, the -p option
(discussed later) may be useful.

In the examples above, not only did the file name and the Cayley library name match, but
both matched the actual name for the object appearing in the Cayley library. Actually, the
name for the object need not be related to the name of the Cayley library. For example, the
following is acceptable.

† As with matrices, this alternate format at present fails to work correctly on some machines.

9

04/17/2007

LIBRARY psp62;

" PSp(6,2) acting on nonzero vectors, degree 63."

G: permutation group(63);

G.forder: 2^9 * 3^4 * 5 * 7;

G.generators:

a = (1,2)(3,5)(4,7)(8,12)(11,16)(13,19)(17,18)(20,26)(21,28)(23,30)(24,32)

(25,34)(29,37)(31,40)(33,43)(36,46)(38,41)(39,49)(42,44)(45,52)(48,51)

(53,58)(57,62)(59,61),

b = (1,3,6,10,15,22)(2,4,8,13,20,27)(5,9,14,21,29,38)(7,11,17,23,31,41)

(12,18,24,33,44,34)(16,19,25)(26,35,45,53,32,42)(28,36,47)(30,39,50,

56,61,58)(37,48)(40,51,46,54,59,62)(49,55,60,63,52,57);

FINISH;

In this situation, the command line must still specify the Cayley library name (and file name,
if different), but informative messages printed as the command executes use the object name
(G, in this case). For objects created by commands, an object name different from the Cayley
library name may be specified by means of the -n option, discussed later.

III. FIELDS, MONOMIAL PERMUTATIONS, AND MATRICES

This section treats several topics that arise primarily in connection with computations in-
volving combinatorial structures – designs, matrices, and codes.

i) Finite fields: Finite fields arise when computing with codes, or with matrices whose
entries belong to the field. At present, only fields GF(q) whose order q is either 4 or a prime
integer are supported; moreover, we must have q ≤ 255. (For automorphism group and
isomorphism calculations, time and space considerations generally dictate a practical limit
on q that is far lower.) Field elements are numbered 0, 1, . . . , q − 1. When q is prime, the
field is taken as the integers modulo q. When q = 4, there is an essentially unique way to
number the field elements.

We denote the set of nonzero elements of GF(q) by GF(q)#.

ii) Monomial permutations: Given a fixed field GF(q), a monomial permutation of
monomial degree n over GF(q) is essentially a permutation s on GF(q)# × {1, . . . , n} which
satisfies the following property, henceforth referred to as the monomial property:

(α, i)s = (β, j) implies (γα, i)s = (γβ, j)

for all α, β, γ ∈ GF(q)# and i, j ∈ {1, . . . , n}.

Note that s is determined completely by its action on the points (1, i), 1 ≤ i ≤ n; note also
that the actual degree of s is (q − 1)n.

10

04/17/2007

For purposes of actual computation, however, we want a representation of s as a permutation
on {1, . . . , (q − 1)n}; to obtain this, we number the pair (α, i) by (q − 1)(i − 1) + α, where
α denotes the integer representing α. Then the monomial property becomes

((q − 1)(i− 1) + α)s = (q − 1)(j − 1) + β implies

((q − 1)(i− 1) + γα)s = (q − 1)(j − 1) + γβ.

For example, over the field GF(4), the monomial permutation s on GF(4) × {1, 2, 3, 4}
determined by

(1, 1)s = (3, 2), (1, 2)s = (2, 4), (1, 3)s = (1, 1), (1, 4)s = (2, 3)

is represented as a permutation on {1, . . . , 12} as follows:

(1, 6, 10, 8, 2, 4, 11, 9, 3, 5, 12, 7).

iii) Permutations acting on matrices: Let A = (aij) be an r × c matrix with entries
from an arbitrary set. A permutation s of degree r+ c which fixes {1, . . . , r} setwise induces
an action on A as follows: Row i of A is moved to row position is (1 ≤ i ≤ r) and column
j of A is moved to column position (r + j)s − r (1 ≤ j ≤ c). Thus

As = (bij), where bij = ai′j′ , with i′ = is
−1

and j′ = (r + j)s
−1

− r.

If As = B, we say that s is an isomorphism of A to B. When As = A, s is called an
automorphism of A. The group formed by the automorphisms is called the automorphism

group of A, and denoted AUT(A).

For example, the action of a permutation s of degree 7 on a 3× 4 matrix A is illustrated by
the following.

s = (1, 3, 2)(4, 7, 5), A =

8 0 4 3
2 9 3 0
0 1 7 5

 , As =

9 0 3 2
1 5 7 0
0 3 4 8

 .

iv) Monomial permutations acting on matrices: Now let A = (aij) be an r×c matrix
with entries from a field GF(q). A monomial permutation s of monomial degree r+c (actual
degree (q − 1)(r + c)) which fixes {1, . . . , (q − 1)r} setwise induces an action on A. This
action is most easily described if we think of s as a permutation on GF(q)# × {1, . . . , n},
as in (ii) above; then s fixes {(α, i)|α ∈ GF(q)#, 1 ≤ i ≤ r} setwise. If (1, i)s = (α, k) and
(1, r + j)s = (β, r + m), then row i of A is multiplied by α and moved to row position k,
and column j of A is multiplied by β and moved to column position m. Thus

As = (bij), where bij = λ−1µ−1ai′j′ ,

with λ, µ, i′, and j′ determined by

(λ, i′) = (1, i)s
−1

and (µ, r + j′) = (1, r + j)s
−1

.

If As = B, we say that s is an monomial isomorphism of A to B. When As = A, s is
called a monomial automorphism of A. The group formed by the automorphisms is called
the monomial automorphism group of A, and denoted AUT∗(A).

11

04/17/2007

For example, over the field GF(4), the action of a monomial permutation s of monomial
degree 5 (actual degree 15) on a 2× 3 matrix A is illustrated by the following.

(1, 1)s = (3, 2), (1, 2)s = (1, 1), (1, 3)s = (2, 5), (1, 4)s = (3, 3), (1, 5)s = (2, 4),

s = (1, 6, 3, 5, 2, 4)(7, 14, 12, 8, 15, 10, 9, 13, 11), A =

(

2 0 3
0 3 1

)

, As =

(

2 2 0
0 3 2

)

.

IV. PARTITION BACKTRACK COMMANDS

The commands employing the partition backtrack method that are currently available are
described below. Note material in square brackets is optional. (The brackets themselves are
not to be typed.) Discussion of most of the available options will be deferred to Section V;
only those unique to a specific command will be mentioned here.

Options are never required, but they may prove useful in controlling the format of the output
or the procedures used in the computation. For example, certain options allow for a time
versus space tradeoff. For some “unusual” groups (e.g., very dense imprimitive groups), it
may be necessary to specify nonstandard options in order to obtain acceptable performance.

The partition backtrack programs described here represent full implementations of the par-
tition backtrack method, as set forth in (Leon, 1991), with two exceptions.

i) The criterion in Prop. 8(iii) is not checked.

ii) In coset–type computations, the refinement R+ of Figure 8 is always taken as R†

Set stabilizers: Set stabilizers may be computed by the setstab command. The format
is

setstab [options] permGroup pointSet stabilizerSubgroup

This command computes the set stabilizer in the permutation group permGroup of the set
pointSet and saves the result (in Cayley library format) as the permutation group stabiliz-

erSubgroup.

At present, the set stabilizer program sometimes run slowly in doubly transitive groups, and
often runs very slowly in groups that are triply transitive or “almost” triply transitive (e.g.,
SLn(2)), especially when both the point set and its complement are large and when the
set stabilizer turns out to be small. Imprimitive groups closely related to doubly transitive
groups may also cause difficulty. Modifications to alleviate this difficulty, at least in part,
will be added eventually.

† In order to allow this manual to be printed without special AMS TeX fonts, underlined letters (e.g.,

R) are used here as a substitute for letters appearing in the Euler Fraktur (German) font in (Leon,

1991).

12

04/17/2007

Set images: Given a permutation group G on {1, . . . , n} and subsets Λ and Φ of {1, . . . , n},
the setimage command may be used to determine if there exists an element g of G such
that Λg = Φ. The format is

setimage [options] permGroup pointSet1 pointSet2 groupElement

where permGroup, pointSet1, pointSet2, and groupElement play the role of G, Λ, Φ, and
g, respectively. That is, the command determines whether there exists an element of per-
mGroup mapping pointSet1 to pointSet2 and, if so, saves one such element as the permu-
tation groupElement. Note that groupElement will not be created if Φ /∈ ΛG. (Unless the
-q option is specified, a message indicating whether Φ ∈ ΛG will be written to the standard
output.) The potential difficulties with doubly and triply transitive groups mentioned for
set stabilizer computations apply here also.

Ordered partition stabilizers: Stabilizers of ordered partitions may be computed by the
parstab command. The format is

parstab [options] permGroup ordPartition stabilizerSubgroup

This command computes the stabilizer in the permutation group permGroup of the ordered
partition ordPartition and saves the result as the permutation group stabilizerSubgroup.
The remarks about performance on doubly and triply transitive groups for set stabilizer
computations apply here also.

Ordered partition images: Given a permutation group G on {1, . . . , n} and ordered
partitions Π and Σ of {1, . . . , n}, the parimage command may be used to determine if there
exists an element g of G such that Πg = Σ. The format is

parimage [options] permGroup ordPartition1 ordPartition2 groupElement

where permGroup, ordPartition1, ordPartition2, and groupElement play the role of G, Π, Σ,
and g, respectively. That is, the command determines whether there exists an element of
permGroup mapping ordPartition1 to ordPartition2 and, if so, saves one such element as
the permutation groupElement. The permutation groupElement is created only if Σ ∈ ΠG.
The remarks about performance on doubly and triply transitive groups given above for set
stabilizer computations apply here also.

Group intersections: Given permutation groups G and H on {1, . . . , n}, the inter com-
mand may be used compute the intersection G ∩H. The format is

inter [options] permGroup1 permGroup2 interGroup

This command computes the intersection of groups permGroup1 and permGroup2 and saves
the result as the group interGroup. The potential difficulty with doubly and triply transitive
groups discussed above for set stabilizer computations applies here also when both groups
are doubly or triply transitive.

13

04/17/2007

Centralizers of elements: Given a permutation group G and a permutation x (not nec-
essarily contained in G), the cent command may be used compute CG(x), the centralizer in
G of x. The format is

cent [options] permGroup permutation centralizerSubgroup

Here permGroup, permutation, and centralizerSubgroup play the role of G, x, and CG(x)
above. That is, the command computes the centralizer in the group permGroup of the
permutation permutation and saves the result as the group centralizerSubgroup.

For this command, it is permissible to specify permGroup as #n, where n is an integer at least
2, in which case permGroup is taken as the symmetric group of degree n; in this situation,
the normal restrictions on base size (discussed later) do not apply to permGroup, although
they do apply to centralizerSubgroup.

The cent command accepts an option -np which can have an effect (often small) on perfor-
mance. If this option is specified, a refinement process based on the cycle structure of x will
not be used. The effect is to reduce memory requirements a bit. In many cases, the running
time does not change significantly, but in some cases it does increase a great deal.

It should be noted that in many cases, perhaps most cases arising in practice, centralizer
computations are fairly easy even for conventional algorithms, and the partition backtrack
program may perform no better than, and perhaps not even as well as, programs based on
conventional techniques, such as those in Cayley. (Note, however, that, unlike Cayley, the
program here does not require that the permutation to be centralized lie in the group.)

Conjugacy of elements: Given a permutation group G and permutations x and y (not
necessarily contained in G), the conj command may be used to determine if x and y are
conjugate under G and, if so, to find g in G with xg = y. The format is

conj [options] permGroup permutation1 permutation2 conjugatingElement

Here permGroup, permutation1, permutation2, and conjugatingElement play the role of G,
x, y, and g above. That is, the command determines if there exists an element of permGroup

conjugating permutation1 to permutation2 and, if so, it saves one such element as the per-
mutation conjugatingElement. If the two permutations are not conjugate in permGroup, then
conjugatingElement is not created. In any case, a message indicating the result is written to
the standard output (unless the -q option is specified).

As with the cent command, permGroup may be specified as #n, in which case conjugacy in
the symmetric group of degree n is checked. (In this case, the program merely checks that
the two permutations have the same cycle structure.) Also, the -np option is accepted, and
it works as described above for the cent command.

As with centralizer computations, conjugacy calculations are usually easy with conventional
algorithms, and the partition backtrack method may not yield an improvement.

14

04/17/2007

Centralizers of groups: Given a permutation groups G and a second permutation group
E (not necessarily contained in G), the gcent command may be used compute CG(E), the
centralizer in G of E. The format is

gcent [options] permGroup1 permGroup2 centralizerSubgroup

Here permGroup1, permGroup2, and centralizerSubgroup play the role of G, E, and CG(E)
above. That is, the command computes the centralizer in the group permGroup1 of the
group permGroup2 and saves the result as the group centralizerSubgroup.

As with the element centralizer command (cent), it is permissible to specify permGroup1

as #n, indicating the symmetric group of degree n.

To an even greater extent than element centralizer calculations, group centralizer calcula-
tions tend to be easy ones for conventional algorithms; the full power of the partition method
is not needed, and perhaps not even desirable. For this reason, little effort has gone into
development of the gcent command; its implementation is fairly crude, and it is included
primarily for completeness. There are two options, -cg:m and -cp:p, which affect its per-
formance; for some groups G, it may be necessary to assign them values different from the
defaults (current 3 and 10, respectively). A full description of the significance of m and p will
not be given here; however, we note that higher values (especially for m) increase memory
requirements, and often increase execution time as well, but may be needed if the group E
fails to have a small generating set (e.g., if E is a large elementary abelian group).

By specifying permGroup1 and permGroup2 as the same group, the gcent command may
be used to compute the center of a group; note, however, that it represents an exceptionally
inefficient algorithm for this purpose.

Automorphism groups of designs: The desauto command may be used to compute
the automorphism group of a design. Here a design means any set of points (numbered
1, . . . , n for some n) and any collection of subsets of the point set. The format of the design
automorphism group command is:

desauto [options] design autoGroup

and the command sets autoGroup to the automorphism group of the design design.

The interpretation of the group autoGroup that is created depends on whether the -pb

(points and blocks) option is specified. Let p and b denote the number of points and blocks,
respectively, of the design.

i) If the option -pb is specified, then autoGroup is constructed as a group of degree
p+b, in which the action on 1, . . . , p is the action on points and in which the action
on p+1, . . . , p+ b is the action on blocks, the j th block being represented by p+ j.

ii) If the -pb option is omitted, then autoGroup is constructed as a group of degree p,
representing the action on points only. In this case, if there are repeated blocks, the
group acting on points only has lower order than the group acting on points and
blocks). When this situation arises, the group saved as autoGroup represents the
group on points only, but the information written to the standard output during
the computation refers to the group acting on points and blocks. (This occurs
because the computation is carried out on points and blocks; restriction to points

15

04/17/2007

is performed only at the end; note also, for this reason, restriction to points only
does not save time or memory.)

Isomorphism of designs: The desiso command may be used to check isomorphism of
designs. The format is

desiso [options] design1 design2 isoPerm

and the command sets isoPerm to an isomorphism from design design1 to design design2,
provided the designs are isomorphic. (If not, the permutation isoPerm is not created. In
any case, a message indicating the result is written to the standard output, unless the -q

option is specified.)

As in the case of the desauto command, described above, the presence or absence of the -pb
option determines whether isoPerm is constructed as a permutation on points and blocks,
or on points only (the default). When the action on blocks is included, the j th block is
represented by p+ j.

Automorphism groups and monomial groups of matrices: The matauto command
may be used to compute the automorphism group of a matrix. If the matrix elements are
taken from a small finite field GF(q), then optionally the monomial automorphism group
may be computed. (See Section III for definitions.) The command format is:

matauto [options] matrix autoGroup

and the command sets autoGroup to the automorphism group of the matrix matrix or, if
the -mm option is specified, to the monomial automorphism group of matrix .

If the -tr option is specified, the matrix is transposed after it is read in, and all computations
apply to the transposed matrix.

Let r and c denote the number of rows and columns, respectively, of the matrix A = (aij)
whose group is to be constructed. Normally the automorphism group has degree r + c and
the monomial automorphism group has degree (q − 1)(r + c); the interpretation of these
groups is described in Section III. However, if the -ro (rows only) option is specified, the
degree will be r or (q− 1)r, and the group will represent the action on rows only. Note that
restriction to rows only may reduce the order of the group, just as in the case of designs
restriction to points only may reduce the order of the group. When this occurs, the remarks
above for design groups apply here also.

At present, the program for computing monomial groups of matrices is a very crude one. As
a result, although it works reasonably for many matrices of fairly large size, it can fail to
run in acceptable time even for very small matrices, e.g., matrices of all 0s. Sometimes use
of the -tr option can get around this difficulty (which will be fixed eventually).

16

04/17/2007

Isomorphism and monomial isomorphism of matrices: The matiso command may
be used to check if two matrices are isomorphic or, if the matrix elements are from a finite
field GF(q), monomially isomorphic. (See Section III for definitions.) The command format
is

matiso [options] matrix1 matrix2 isoPerm

In the absence of the -mm option, the command sets isoPerm to an isomorphism from matrix
matrix1 to matrix matrix2, provided the matrices are isomorphic. (If not, the permutation
isoPerm is not created). If the -mm option is specified, the command sets isoPerm to a
monomial isomorphism from matrix matrix1 to matrix matrix2, provided the matrices are
monomially isomorphic. (In this case, the matrix entries should be field elements.) The
effect of the -ro option is as described above for matrix automorphism group calculations.

Currently the monomial isomorphism program suffers from the same limitations as the mono-
mial automorphism group program, as mentioned above.

Automorphism groups of linear codes: The codeauto command may be used to com-
pute the automorphism group of a linear code over a small field GF(q). However, before the
automorphism group of a code C may be computed, it is necessary to have a set V of vectors
(not necessarily codewords) such that the following conditions hold. In these conditions, V ∗

denotes the set of all nonzero scalar multiples of vectors in V .

i) No vector in V is a scalar multiple of any other vector in V . (In particular, |V ∗| =
(q − 1)|V |.)

ii) V is “reasonably small”. (With a very large memory, “reasonably small” might mean
100,000 or more.)

iii) V ∗ is invariant under AUT(C) (the automorphism group of C),

iv) |AUT(V ∗) : AUT(C)| is very small. (The running time rises very rapidly as a function
of this index. Note that, if V spans C, the index is 1.)

Often the set of minimal weight vectors of the code (scalar multiples removed if q > 2)
make a suitable choice for V ; minimum weight vectors of the dual code may also be used.
This choice for V certainly satisfies (i) and (iii), may well satisfy (ii), and in many cases
satisfies (iv). The author has available programs for computing the set of minimum weight
vectors (or vectors of any specified weight.)

The format of the code automorphism group command is

codeauto [options] code invarVectors autoGroup

where invarVectors is the set V of vectors described above (in the format of a matrix, whose
rows are the vectors). The command sets autoGroup to the automorphism group of the code
code.

17

04/17/2007

The -cv (coordinates and vectors) option for codes has essentially the same effect as the
-pb option for designs. With this option, the automorphism group is saved in autoGroup

as a permutation group of degree (q − 1)(n + |V |) (n = length of code), representing the
action on (monomial) coordinates and invariant vectors; without the -cv option, it is saved
as a permutation group acting of degree (q − 1)n, representing the action on (monomial)
coordinates only. (However, restriction to coordinates only can never lead to a reduction in
the group order, as occurred with restriction to points or rows for designs or matrices.) For
an explanation of the format of monomial permutations, see Section III.

At present, the program for computing groups of non–binary codes is a very crude one;
sometimes it can fail to run in reasonable time even on small codes. Eventually this program
will be improved.

Isomorphism of linear codes: The codeiso command may be used to check isomorphism
of linear codes. However, before isomorphism of two codes C1 and C2 may be checked, it is
necessary to have a sets V1 and V2 of vectors (not necessarily codewords of the two codes)
such that V1 and V2 satisfy conditions (i), (ii), (iii), and (iv) above relative to C1 and C2,
respectively, and in addition such that any isomorphism of C1 to C2 must map V ∗

1 to V ∗

2 .
(As with code automorphism groups, V ∗

1 and V ∗

2 denote the sets of nonzero scalar multiples
of vectors in V1 and V2, respectively. Often suitable choices for V1 and V2 are the minimal
weight vectors of C1 and C2, respectively (scalar multiples removed.); minimal weight vectors
of the duals of the two codes also could be used.

The format of the code isomorphism command is

codeiso [options] code1 code2 invarVectors1 invarVectors2 isoPerm

where invarVectors1 and invarVectors2 are the sets V1 and V2, respectively, of vectors de-
scribed above (each in the format of a matrix, whose rows are the vectors). The command
sets isoPerm to an isomorphism from code1 to code2, if the codes are isomorphic; if not,
isoPerm is not created.

As in the case of the codeauto command, described above, the presence or absence of
the -cv option determines whether isoPerm is a permutation on (monomial) coordinates
and invariant vectors, or on (monomial) coordinates only. The interpretation of monomial
permutations is described in Section III..

Note that a number of the commands above are implemented as shell files (under Unix), batch
files (under MS DOS), or exec files (under CMS). The commands that are implemented in
this manner, and the contents of the Unix shell files, are as follows. (The list includes a few
commands to be discussed in Section IX.)

18

04/17/2007

command contents of shell file

setimage setstab -image $*

parstab setstab -partn $*

parimage setstab -image -partn $*

conj cent -conj $*

gcent cent -group $*

desiso desauto -iso $*

matauto desauto -matrix $*

matiso desauto -iso -matrix $*

codeauto desauto -code $*

codeiso desauto -iso -code $*

cjper cjrndper -perm $*

ncl commut -ncl $*

compper compgrp -perm:$1 $2 $3

compset compgrp -set:$1 $2 $3

chbase orblist -chbase $*

ptstab orblist -ptstab $*

V. OPTIONS

A partial description of the options that are currently available follows. Most of the options
are available with all of the commands described in Section IV. A few options apply only to
subgroup computations, or only to coset–representative computations; these restrictions are
noted below. Options applicable only to a single command are discussed with that command
in Section IV.

In general, options may be specified in any order. However, if conflicting options are specified,
the one specified last is the one that is used. (In some cases, conflicting options are treated
as an error. Also, the -l and -v options, discussed later, are an exception to the general
rule that options may be specified in any order; these options, if present, must come first,
and the remainder of the command line is ignored.)

Entering any command with no options or arguments causes a brief summary of the command
format to be displayed.

Options affecting file handling:

-a Normally, if a file name is specified for an object to be constructed, and
if a file by that name already exists, the programs overwrite the existing
file. With the -a option, they append to the existing file, rather than
overwriting it.

19

04/17/2007

-p:path Here path is a string. The string path is concatenated to the file name
of every input file. This option can be useful if all the input files are in
another directory. For example,

setstab ../groups/psp62::psp62 ../groups/lambda::lambda S

may be written more compactly as

setstab -p:../groups/ psp62 lambda S

(Note the final slash following groups is required.). The -p option has no
effect on output files.

Options affecting output format:

-i This option applies to commands that construct and write out either a
permutation or a permutation group. It causes permutations to be written
in image format, rather than in cycle format (the default).

-n:name Here name is a string. The object created by the command will be named
name. By default, the name assigned to the object will be the name of the
Cayley library containing its definition. Note this option affects only the
name of the object, not that of the file or the Cayley library.

-q Suppresses informative messages on the state of the computation, normally
written to the standard output during the computation.

-s Causes statistics on the pruning of the backtrack search tree to be writ-
ten out to the standard output. These statistics relate to the backtrack
search tree defined in the author’s paper (Leon, 1991), and are likely to be
meaningful only to users familiar with that paper.

-w:n Here n should be a nonnegative integer. This option applies only to coset
representative computations. If the degree is less than or equal to n, and if a
coset representative is found, it will be included in the informative messages
written to the standard output. (In any case, the coset representative will
be written to a file in Cayley library format.) The default value of n is
currently 300.

Options affecting performance of the algorithm:

-b:k Here k is a nonnegative integer which determines the extent to which base
changes are performed in an attempt to improve pruning of the backtrack
search tree using tests on double–coset minimality (Leon, 1991, Prop 8).
When k = 0, base change is never performed (except during R–base con-
struction, when it is used for a different purpose). As k increases, the
number of base change operations performed increases; however, increas-
ing k beyond the base size produces no further increase in the number of
base change operations. Designating k = 0 reduces memory requirements
and often produces the best running times as well. On the other hand,
some high–density groups seem to require a higher value of k in order to

20

04/17/2007

obtain acceptable performance. By default, the program chooses a value
of k based on the density and degree of transitivity of the group; quite
often, this default value is 0.

Note: For coset representative computations, this option has no effect un-
less known subgroups of the two associated groups are specified; see dis-
cussion of the -kL and -kR options below.

-g:m Here m should be a nonnegative integer. This is one of several parameters
providing a time vs. space tradeoff. Small values of m, say 10 or less,
minimize memory requirements, while large values ofm, say 100 or greater,
reduce the running time moderately for most difficult groups. Use of a high
value is recommended for multiply transitive groups.

After R–base construction, the program attempts to reduce the height of
the Schreier trees for the containing group by adding new strong generators.
However, it will never add generators for this purpose if doing so would
cause the total number of strong generators to exceed m. (It will also stop
adding generators if the height falls below certain goals currently fixed in
the program.)

-k:H Here H specifies a permutation group (in the format cayleyLibraryName

or fileName ::cayleyLibraryName). This option applies only to subgroup
calculations. The group H must be a known subgroup of the group being
computed. In principle, this option allows one to take advantage of any
subgroup of the group being computed that happens to be known in ad-
vance. In practice, however, it seldom appears to speed up the computation
by very much, and it increases memory requirements.

-kL:J

-kR:M

Here J and M must specify permutation groups (each in the format cay-
leyLibraryName or fileName ::cayleyLibraryName). These options apply
only to coset representative calculations. Either or both may be speci-
fied. Associated with every coset representative computation, there are
“left” and “right” groups, as explained in Section 2 of (Leon, 1991).
The groups J and M must be known subgroups of these left and right
groups, respectively. Specifying J and/or M , if known, increases mem-
ory requirements, but in some cases it may improve the running time.
For some very dense groups, one or both of these options may be needed
in order to allow the computation to finish in an acceptable amount of
time.

-mb:k Here k should be a nonnegative integer. This integer represents an upper
bound on the size of the base for a permutation group. The default value
of k is 62, which is more than adequate for many groups. For further
discussion of the -mb option, see Section VII.

-mw:ℓ Here ℓ should be a nonnegative integer whose value is at least several
hundred. This integer represents an upper bound on the length of any
word in the generators of any permutation group. For further discussion,
see Section VII.

21

04/17/2007

-r:p Here p should be a nonnegative integer, normally smaller than the integer
m specified for the -g option described above. This is another option
providing for a time versus space tradeoff. Small values of p, say less than
10, minimize memory requirements, while larger values, say 50 or higher,
may reducing the running time, although usually not a great deal.

Whenever the number of strong generators for the containing group exceeds
p, redundant strong generators are eliminated, using a procedure originally
due to Sims (1971).

Special options:

-l This option, if present, must be the first option on the command line,
and the remainder of the command line is ignored. (It may be omitted.)
The -l option merely prints out limits on the default maximum base size,
default maximum word length, degree, and other quantities with which this
version of the program has been compiled. (See Section VII for discussion
of these limits.)

-v This option, if present, must be the first option on the command line, and
the remainder of the command line is ignored. (It may be omitted.) The
-v option is intended to be used once following compilation of the program.
It attempts to check that all the source files for the program were compiled
with the same options and size limits. (See Section VII for discussion of
size limits.)

VI. OUTPUT AND RETURN CODES

All programs for subgroup computations return a value of 0 if the computation is completed
successfully and a nonzero value (currently 15) if the computation terminates due to an error
(input file not found, incorrect format in input file, memory exhausted, size limit in program
exceeded, etc.) All programs for coset representative computations return a value of 0 if the
computation is completed successfully and a coset representative exists, 1 if it is completed
but a coset representative does not exist, and a value different from 0 and 1 (currently 15)
if the computation terminates due to an error.

Unless the -q option is specified, all of the programs write information about the progress
of the computation to the standard output. Some of this information, most notably that
relating to the R–base and the backtrack search tree (the latter given only if -s is specified)
will probably be meaningful primarily to users familiar with the author’s paper (Leon, 1991).
Information of more general interest includes:

i) The order of the containing group (unless it is the symmetric group). Note that this
order is determined by computing a base and strong generating set for the containing
group when it is read in, unless they are supplied in the input file.

ii) The new (changed) base and strong generating set for the containing group computed
duringR–base construction, and the corresponding basic orbit lengths. In the notation
of (Leon, 1991), this is the base (α1, . . . , αk) associated with the R–base.

22

04/17/2007

iii) A base for the subgroup to be computed (subgroup computations) or for the subgroup
associated with the right coset whose representative is to be computed (coset repre-
sentative computations). This is the subgroup base associated with the R–base; in
the notation of (Leon, 1991), it is (α̂1, . . . , α̂ℓ). Note that this base is a subsequence
of the base for the containing group in (ii) above.

iv) The basic cell sizes corresponding to the subgroup base in (iii) above (for definitions,
see (Leon, 1991)). Note that each basic cell size provides an upper bound for the
corresponding basic orbit length of the subgroup to be computed (subgroup–type
computations). (Usually the bound is not sharp).

v) The number of strong generators for the containing group and the mean node depths
in the Schreier trees for the basic orbits of the containing group. Depending on the -g
and -r options, following R–base construction, additional strong generators may be
added in an attempt to reduce the height of the Schreier trees. Figures are provided
both before and after additional strong generators are added.

vi) [subgroup computations only] A message for each strong generator that is found for
the subgroup. The message gives the level and the basic orbit lengths for the subgroup
constructed thus far. (A generator will be said to be at level i if it fixes the first i− 1
base points but moves the ith.)

vii) [subgroup computations only] The order of the subgroup that was computed.

viii) [subgroup computations only] The base (same as in (iii) above) and basic orbit lengths
for the subgroup that was computed.

ix) [coset representative computations only] A message indicating whether a coset repre-
sentative exists.

x) [coset representative computations only] If a coset representative exists and the degree
is sufficiently low (depending on the -w option), the coset representative that was
found.

xi) The time required for the computation. Note that the time to read in the containing
group from a file, construct the initial base and strong generating set for the containing
group (if not present in the input file), and to write out the subgroup or coset represen-
tative to a file is not included in this time. All computations relating to calculation of
the subgroup or coset representative (including base changes in the containing group)
are included.

Note that, in subgroup computations, the actual strong generators for the subgroup are
not written to standard output, and in coset computations, the actual coset representative
found may not (depending on the degree and -w option) be written to the standard output.
However, both may be found (in Cayley library format) in the output file that is created.

For design, matrix, or code isomorphism computations, the isomorphism that is constructed
is written to the standard output (assuming that the degree is sufficiently low) in a more
easily readable (but not Cayley compatible) format than that described in Sections II and III.
For designs with the -pb option, the action on points and blocks is given separately. For

23

04/17/2007

matrices, the action on rows and columns is given separately. For monomial isomorphism of
matrices for non–binary codes, the monomial isomorphism is written in the following format:

([λ1]i1, [λ2]i2, . . . , [λk]ik)

This denotes the monomial permutation mapping 1 to λ1i1, 2 to λ2i2, etc. For example, to
apply this monomial permutation to the rows of an r by c matrix, row j is multiplied by λj
and the result is moved to row position ij .

VII. SIZE LIMITS

There are a few fixed limits on the sizes of objects that the programs can handle. These
limits can be changed only by recompiling the programs. The order of any group may have
at most 30 distinct prime divisors. The name of any file may have at most 60 characters
(including path information supplied with the -p option). The name of any object may have
at most 16 characters. Most importantly, if the program is compiled using 16–bit integers,
the maximum degree of any permutation group is limited to slightly less than 216 (about
65000). If it is compiled using 32–bit integers, there is, for practical purposes, no fixed limit.
Note, however, that use of 16–bit integers reduces memory requirements substantially, and
it is recommended unless groups of degree greater than 65000 (approx) are to be used. Only
machines having at least 20 to 25 megabytes of memory are likely to be able to handle groups
of degree high enough to require 32–bit integers. Currently both 16–bit and 32–bit compiled
versions of the programs are available.

Although there is no fixed limit on the base size for a permutation group, a limit must be
established at the time that the program is initiated, and this limit remains fixed during
that run. This limit may be set at k by means of the -mb:k option, or it may be allowed to
default to 62. Note that large values of k increase running times and memory requirements
slightly even if the actual base size turns out to be much less than k.

For the most part, the amount of memory (real and virtual) available determines the sizes of
objects that can be handled by the programs. Memory requirements depend heavily on the
degree of the group, and to a somewhat lesser extent on the base size. The programs can use
virtual memory to some extent; however, if virtual memory used exceeds real memory by a
factor of more than 1.6 to 1.8, excessive paging is likely to occur. The following steps may
be taken to reduce memory requirements; the steps are listed in order of decreasing benefit.

i) If the degree of the group is less than 65000 (approx), use a 16–bit version of the
program rather than a 32–bit version. The 16–bit version is likely to run about as fast
as the 32–bit version, and it requires a great deal less memory.

ii) Specify options of -g:1 and -r:1. These options are likely to increase the execution
time substantially, but they often save a good deal of memory. As a compromise,
values greater than 1 but less than the defaults may be specified, e.g., -g:20 and
-r:15

iii) Specify the option -b:0 if it is not already the default. In the majority of cases,
this option will not increase execution time, and it reduces memory requirements
considerably. However, in a great many cases, -b:0 will already be the default. (The

24

04/17/2007

value for this and other options is displayed on the standard output when the program
is is run.)

iv) For (element) centralizer and conjugacy calculations, specify the -np option. This
saves a modest amount of memory. The effect on execution time is hard to predict;
in some cases, it may lead to a major increase. For group centralizer calculations,
options of -cg:2 and -cp:i, where i is 3 to 5, may be tried, although on some groups
they may raise the running time to unacceptable levels.

v) Specify the option -mb:k for a value of k less than the default of 62. The -mb:k
options sets a limit of k on the base size for the group; often a value considerably less
than 62 (e.g., 15 or 20) will be adequate. However, the amount of memory saved is
relatively small.

In the author’s experience, the programs can often handle groups of degree as high as 2000m
to 3000m, where m is the number of megabytes of real memory available. However, for
groups lacking a relatively small base, the limit on the degree is much lower. Also, this limit
applies only to memory requirements; depending on the type of computation and the specific
groups, it may or may not be possible to perform computations in groups this large in an
acceptable amount of time.

VIII. EXAMPLES

The author has prepared a number of sample objects that may be used to test the programs.
In the Unix distribution, these objects appear in various subdirectories of the directory
partn/examples.

The subdirectories psp62, psp82, psu72, omg84, fi23, ahs2, rubik4, and syl128 of directory
partn/examples contain examples for computation in the groups PSp6(2) of degree 63,
PSp8(2) of degree 255, PSU7(2) of degree 2709, Ω+

8 (4) of degree 5525, Fi23 of degree 31671,
AUT(HS) × AUT(HS) of degree 200, the group of a 4 × 4 Rubik’s cube (degree 96), and a
Sylow 2–subgroup of the symmetric group Sym(128) of degree 128, respectively. Note that,
for the last two groups, any base will be large, and the -mb option (e.g., -mb:75) will need
to be specified. Each of the directories contains files as follows, where grp is to be replaced
by the actual name of the directory.

grp The permutation group mentioned above.

grpx A group permutation isomorphic to the group grp and having a small but
nontrivial intersection with grp. The intersection of grp and grpx may be
computed by the command

inter grp grpx int

which saves the intersection as the group int. The file grpx contains a com-
ment giving the order of the intersection.

25

04/17/2007

set1 A random point set of size half the degree of grp. Except in the case of rubik4
and syl128, the set stabilizer of set1 in the group grp turns out to be trivial.
This set stabilizer may be computed by the command

setstab grp set1 stab1

which saves the set stabilizer as the group stab1.

set2 A point set of size approximately half the degree whose set stabilizer in grp is
a dihedral group of low order, except in the case of rubik4 and syl128. This
set stabilizer may be computed by the command

setstab grp set2 stab2

which saves the set stabilizer as the group stab2. The file set2 contains a
comment indicating the order of the stabilizer.

set3 A point set of size roughly half the degree (in most cases) whose set stabilizer
in grp is a group of high order. This set stabilizer may be computed by the
command

setstab grp set3 stab3

which saves the set stabilizer as the group stab3. The file set3 contains a
comment indicating the order of the stabilizer.

set1x A point set obtained by applying a randomly–chosen element of the group grp

to set1. The command

setimage grp set1 set1x g

may be used to find an element g of the group grp mapping set1 to set1x.

set1y A point set having the same cardinality as set1 but not equal to the image of
set1 under any element of grp. The command

setimage grp set1 set1y h

may be used to determine that set1y is not in fact an image of set1 under
the group. (The permutation h will not be created.

par1 A partition of the set {1, . . . , n}, where n is the degree of group grp. (The
file contains a comment indicating the number of cells and cell sizes.) The
stabilizer in grp of par1, treated as an ordered partition, may be computed
by the command

parstab grp par1 pstab1

which saves the ordered partition stabilizer as the group pstab1. The file par1
contains a comment giving the order of the stabilizer.

par1x A partition obtained by applying a randomly–chosen element of the group grp

to par1. The command

parimage grp par1 par1x i

may be used to find an element i of the group grp mapping par1 to par1x.

26

04/17/2007

par1y A partition in which the sizes of the cells match those in par1, but which is
not the image of par1 under any element of the group grp. The command

parimage grp par1 par1y j

may be used to demonstrate that par1y is not an image of par1 under any
group element.

elt1 An element of the group grp having a fairly large centralizer in grp. This
centralizer may be computed by the command

cent grp elt1 cent1

which saves the centralizer as the group cent1. The file elt1 contains a
comment stating the order of the centralizer.

elt1x An element conjugate under the group grp to elt1. An element of grp conju-
gating elt1 to elt1x may be found by the command

conj grp elt1 elt1x c1

which sets c1 to such a conjugating element.

elt2 An permutation not in the group grp having a nontrivial centralizer in grp.
This centralizer may be computed by the command

cent grp elt2 cent2

which saves the centralizer as the group cent2. The file cent2 contains a
comment indicating the order of the centralizer.

elt2x A permutation (not in grp) conjugate under grp to elt2. An element of grp
conjugating elt2 to elt2x may be found by the command

conj grp elt2 elt2x c2

which sets c2 to such an element.

elt2y A permutation not in grp having the same cycle structure as elt2 but not
conjugate under grp to elt2. Non–conjugacy may be demonstrated by the
command

conj grp elt2 elt2y d

which does not create a permutation d.

Note that, in the case of the group fi23, about 16 megabytes of real memory may be needed
to perform the calculations above.

The subdirectories q17 and q32 contain designs, (0,1)–matrices, and codes based on the
quadratic residue code Q17 of length 17 and on the extended quadratic residue code Q32

of length 32, respectively. The contents of these directories are as follows, where i denotes
either 17 or 32.

qi The quadratic or extended quadratic residue code.

27

04/17/2007

vi The matrix whose rows are the weight 5 (i = 17) or weight 8 (i = 32) code-
words of the code qi. The automorphism group of the code qi may be com-
puted by the command

codeauto qi vi A

or

codeauto -cv qi vi A

which saves the automorphism group as the group A, either as a group of
degree i or as a group of degree i+ k, where k is the number of codewords in
the set vi.

qix Another quadratic residue code obtained from qi by applying a random per-
mutation to the coordinates..

vix The matrix whose rows are the weight 5 (i = 17) or weight 8 (i = 32) code-
words of the code qix. An isomorphism from qi to qix may be found by the
command

codeiso qi qix vi vix s

which saves the isomorphism found as the permutation s.

di The design on {1, . . . , i} whose blocks correspond to the codewords of weight
5 (i = 17) or weight 8 (i = 32) in qi. The automorphism group of this design
(which must contain the group of the corresponding code, and which in fact
equals it) may be computed by the command

desauto di B

or

desauto -pb di B

which saves the automorphism group as the group B, either as a group on points
only, or as a group on points and blocks. Note that the incidence matrix of
the design di is the transpose of the matrix vi, so the same automorphism
group could be computed by the command

matauto -tr vi A

dix A design obtained from di by applying a random permutation to the points.
(The order of the blocks is also permuted randomly.) An isomorphism from
di to dix may be found by the command

desiso di dix t

which sets t to one such isomorphism.

28

04/17/2007

The subdirectory dmcl contains a design based on the sporadic simple group of McLaughlin
(McL, degree 275). In this group, a point stabilizer has orbits of length 1, 112, and 162.
The design dmcl on {1, . . . , 275} has 275 blocks, each of size 112; the blocks are the orbits
of length 112 in the 275 point stabilizers. The group of this design, which must contain
AUT(McL) and turns out to equal to AUT(McL), may be computed by the command

desauto dmcl Y

which saves the group as Y. (Note that we are computing the group of the design, not the
group of the graph associated with the orbit of length 112; in general, the design group is
larger than the graph group, although in this case they are the equal.) The directory also
contains a second design dmclx, isomorphic to dmcl. An isomorphism may be found by the
command

desiso dmcl dmclx s

which sets s to an isomorphism from dmcl to dmclx.

Finally, the subdirectories had32 and had104 contains 32× 32 and 104× 104 matrices over
GF(3), respectively, which are essentially the Paley–Hadamard matrices. (The entries of -1
have been changed to 2.) The (monomial) automorphism group of either of these Hadamard
matrices may be computed by the command

matauto -mm hadi Z

(i = 32 or 104), which sets Z to the automorphism group. This subdirectories also con-
tain matrices hadix obtained by applying random monomial permutations to the rows and
columns of hadi. Equivalence of hadi and hadix may be established by the command

matiso -mm hadi hadix w

which sets w to an monomial isomorphism from hadi to hadix. Finally, the subdirectories
contain Hadamard designs dhadi (i = 32 or 104) and equivalent designs dhadix, whose
groups may be computed using the desauto command, and whose equivalence may be es-
tablished with the desiso command.

IX. OTHER COMMANDS

In the course of testing and benchmarking the partition backtrack algorithms described in
Section IV, the author developed a number of other programs. Most of these programs were
put together quickly, with a view toward simplicity rather than efficiency; in some cases, they
are very inefficient. Also, some of them perform only minimal error checking. Nonetheless,
they may prove useful since they operate on objects specified in the format described in
Section II.

All of these programs accept the -a, -i, -mb:k, -mw:w, -n:name, -p:path, and -q options,
as described in Section V, whenever they would be meaningful. (For example, the -i option
is meaningful only if the command creates a permutation or permutation group.) Other
options vary by command, and are discussed separately for each command below.

29

04/17/2007

Base and strong generating set construction: The generate command may be used to
construct a probable base and strong generating set for the permutation group generated by
specified permutations. The random Schreier method (Leon, 1980) is used. If the group order
is known in advance, this method always produces a correct base and strong generating set,
although there is no bound on the time required to do so. Otherwise, there is no guarantee
that the method will produce a correct result. However, in the author’s experience, it nearly
always does give a correct result, and it runs far more quickly than alternative methods,
such as the Schreier–Sims or Schreier–Todd-Coxeter–Sims algorithms.

The format for the command is

generate options inputGroup outputGroup

where options denotes

[-a] [-i] [-mb:k] [-mw:w] [-n:name] [-nro] [-p:path] [-q] [-s:seed] [-ti:i] [-tr:m] [-z]

Here inputGroup denotes the original permutation group, for which a base and strong gener-
ating set are not yet available. The factored group order for inputGroup may or may not be
present. The random Schreier method is used to construct a probable base and strong gen-
erating set for inputGroup,, and the result is saved as the permutation group outputGroup.
If the factored group order is present, the computation will continue until a base and strong
generating set has been found. Otherwise it continues until m consecutive quasi–random el-
ements of the group factor in terms of the possible base and strong generating set, where m
is the integer specified in the -tr:m option (default 40). High values of m may be specified
to reduce the chance of an incorrect result, at the cost of slowing down the computation.

Normally, before a new strong generator is added to the strong generating set, an attempt
is made to replace the new generator by a power of it, in order to obtain generators of
low order. (This may be desirable later on if the Schreier–Todd–Coxeter–Sims method is
used to verify the base and strong generating set; in addition, it saves space whenever a
non–involutory generator is converted to an involution.) This attempt may be suppressed
by the -nro option. Note, however, that replacement of generators by powers is relatively
inexpensive, so the -nro option saves little time. The -ti:i option may be specified in order
to have the program try harder to find involutory generators. Up to i consecutive generators
that cannot be converted to involutory generators will be rejected. The default for i is 0;
higher values often increase the execution time a good deal.

If the -z option is specified, the program will make some attempt to remove certain redundant
strong generators from the strong generating set for outputGroup.

Base change: The chbase command may be used to change the base in a permutation
group. The command format is

chbase inputGroup p1, p2, . . . , pk outputGroup

where options denotes

[-a] [-i] [-mb:k] [-mw:w] [-n:name] [-p:path] [-q] [-z]

The base for permutation group inputGroup is changed, if necessary, so that it begins with
p1, p2, . . . , pk, and the group with this new base is saved as outputGroup. Note that, in the list
p1, p2, . . . , pk of points, individual points are separated by commas but not by blanks. Note

30

04/17/2007

also that the points p1, p2, . . . , pk are included in the new base even if they are redundant as
base points. However, no other redundant base points will appear in the new base. If the -z
option is specified, certain redundant strong generators will be removed following the base
change.

Conjugation by a specified permutation: The cjper command may be used to con-
jugate an object (group, permutation, point set, partition, design, matrix, or code) by a
specified permutation. The command format is

cjper options type object conjugateObject conjugatingPerm

where options denotes

[-a] [-b] [-d:deg] [-i] [-mb:k] [-mm] [-mw:w] [-n:name] [-p:path] [-q]

Here type must be one of the keywords group, perm, set, partition, design, matrix, or
code, object must be an object of the type designated by type, and conjugatingPerm must
be a permutation. In the event that object is a permutation, set, or partition, the -d:deg

option must be used to specify the degree deg. The program sets conjugateObject to the
object obtained by conjugating object by conjugatingPerm, in the case that object is a group
or permutation, or to the object obtained by applying conjugatingPerm to object, if object
is a point set, partition, design, matrix, or code. In the event that object is a group, the -b
option forces the program to compute a base and strong generating set for conjugateObject ;
by default, conjugateObject will have a base and strong generating set only if object does.

In the event that object is a design or matrix, the degree is treated as the number of points
plus the number of blocks, or the number of rows plus the number of columns, respectively.
Blocks or columns are permuted as well as points or rows. However, since the input format
for permutations permits a permutation of degree n to be treated as a permutation of any
higher degree, this represents no real restriction.

If object is a matrix over a finite field GF(q), the -mm option may be specified. Then
conjugatingPerm must have degree (q− 1)(r+ c), where r and c are the number of rows and
columns, and must satisfy the “monomial property”, as described in Section III.

Conjugation by a random permutation: The cjrndper command may be used to
conjugate an object by a either a random permutation, or by a permutation chosen at
random from a specified permutation group. The command format is

cjrndper options type object conjugateObject [conjugatingPerm]

where options denotes

[-a] [-b] [-d:deg] [-g:grp] [-i] [-mb:k] [-mm] [-mw:w] [-n:name] [-p:path] [-s:seed] [-q]

Here type must be one of the keywords group, perm, set, partition, design, matrix, or
code, and object must be an object of the type designated by type. In the event that object
is a permutation, set, or partition, the -d:deg option must be used to specify the degree deg.
If object is a permutation or permutation group, the program sets conjugateObject to the
object obtained by conjugating object by a certain permutation x; if object is a point set,
partition, design, matrix, or code, it sets conjugateObject to the object obtained by applying
a certain permutation x to object. In either case, the permutation x is chosen at random from

31

04/17/2007

the group grp, if the -g:grp option is specified, or at random from the symmetric group, if
the -g:grp option is omitted. If conjugatingPerm is specified, the permutation x is saved as
conjugatingPerm. The -s:seed option may be used to specify a specific seed for the random
number generator that is used internally. In the event that object is a group, the -b option
forces the program to compute a base and strong generating set for conjObject, even when
one is not available for object.

In the event that object is a design (or matrix), both points and blocks (or both rows and
columns) are permuted.

If object is a matrix over a finite field GF(q), the -mm option may be specified. Then a
random monomial permutation is applied to the rows and columns of the input matrix.

Commutator groups and lower central series: The commut command may be used
to compute commutator groups. Repeated application of the command may be used to
compute lower central series. Specifically, given a group G and a (not necessarily normal)
subgroup H of G, the command computes the commutator group C = [G,H]. The command
format is

commut options permGroup [subgroup] commutatorGroup

where options denotes

[-a] [-i] [-mb:k] [-mw:w] [-n:name] [-p:path] [-q]

Here, permGroup, subgroup, and commutatorGroup play the role of G, H, and C above,
respectively. If subgroup is specified, it must be a subgroup of permGroup (not checked);
the command sets commutatorGroup to the commutator of permGroup and subgroup. If
subgroup is omitted, the command sets commutatorGroup to the commutator of permGroup

with itself (the derived group).

At present, the strong generating set for the commutator group is constructed only by
the random Schreier method. Thus there is a (probably small) possibility that the base
and strong generating set constructed for the commutator group will be incorrect. (If this
occurs, the generators constructed will generate the commutator group, but not strongly.
This undesirable feature will be fixed eventually.)

The return code from the commut command will 0 if the commutator group has order 1.
Otherwise the return code will depend on whether the order of H (i.e., subgroup) is known
in advance. If so, the return code will 1 if |C| 6= |H| and 2 otherwise. (If H is normal in G,
these correspond to the cases H ⊂ G and H = G, respectively.) If not, the return code will
be 3.

Comparison of groups, normality, and centralization: The compgrp command may
be used to check if either of two permutation groups is contained in the other, or normalizes
the other, or whether the two groups centralize each other. The command format is

compgrp [-c] [-n] [-mb:k] [-mw:w] [-p:path] permGroup1 permGroup2

This command checks if either of permGroup1 or permGroup2 is contained in the other. If
the -n option is specified, it also checks if either group normalizes the other. (Note here the
-n option is used for a different purpose that that described in Section V.) If the -c option is

32

04/17/2007

given, it checks whether the two groups centralize each other. Messages indicating the result
are written to the standard output. The return code is 0 if the two groups are equal, 1 if
permGroup1 is a proper subgroup of permGroup2 , 2 if permGroup2 is a proper subgroup of
permGroup1 , and 3 otherwise. Note: The procedure for checking normality is, at present,
extremely inefficient in many cases.

Comparison of permutations: The compper command may be used to check if two
permutations are equal, or if a permutation is the identity. The command format is

compper degree permutation1 [permutation2]

This command checks if permutation1 and permutation2, both of which must be permuta-
tions of degree degree, are equal. It prints a message indicating whether the permutations
are equal, and gives a return code of 0 if they are equal and 1 otherwise. If permutation2 is
omitted, it is taken as the identity; thus the command checks if permutation1 is the identity.

Comparison of point sets: The compset command may be used to check if two point
sets are equal. The command format is

compset degree set1 [set2]

This command checks if set1 and set2, both of which must be points sets of degree degree,
are equal, or if either is contained in the other. if set2 is omitted, it is taken to be the empty
set, and the command checks if set1 is empty. It prints a message indicating the result. If
set2 is specified, the return code is 0 if the two sets are equal, 1 if set1 is properly contained
in set2 , 2 if set1 properly contains set2 , and 3 otherwise. If set2 is omitted, the return code
is 0 if set1 is empty and 1 otherwise.

Coset weight distributions of codes: The cwtdist command† may be used to compute
the coset weight distribution of a linear code. At present, the program is restricted to binary
codes of codimension at most 32. The program is highly optimized; nonetheless, time and
space requirements may restrict the codimension to values less than its maximum of 32. The
command format is

cwtdist options code [maxCosWeight [matrix]]

where options denotes

[-a] [-n:name] [-p:path] [-q]

The program computes the coset weight distribution of the code code, that is, for each
d, it determines the number of cosets of the code having minimum weight d. If max-

CosWeight is specified (It should be an integer.), the computation is performed only for
d ≤ maxCosWeight . If matrix is given, a coset representative is saved for one coset whose
minimum weight is the minimum of the covering radius and maxCosetWeight . Note: It is
not possible to specify matrix without specifying maxCosWeight ; however, an artificially
large value of maxCosWeight may be given instead.

† At time of writing, this command was not complete. It should be available shortly.

33

04/17/2007

Designs from groups: The orbdes command may be used to construct a block design D
from a permutation group G, which normally should be transitive. The design D will have
n points and n blocks, each having the same number of points, where n is the degree. The
automorphism group AUT(D) will contain the group G (perhaps properly). For a specified
point γ, let Γ denote the orbit of γ under the point stabilizer G1. The blocks of D are exactly
Γu1 , . . . ,Γuk , where k is the size of the G–orbit of 1, and u1, . . . , uk map 1 to the different
points of the G–orbit of 1. The command format is

orbdes [-a] [-m] [-mb:k] [-mw:w] [-p:path] permGroup point design

Here permGroup, point, and design play the role of G, γ, and D above, respectively. If the
-m option is given, the incidence matrix of the design is written out as a matrix; otherwise
the design is written in the standard format for designs.

Finding group elements of specified order: The fndelt command may be used to
locate group elements of specified order, using a quasi-random search process. (Random
group elements are examined in searching for ones whose order is a multiple of the specified
order.) The command format is

fndelt options permGroup n k1 k2 . . .

where options denotes

[-a] [-f] [-i] [-m:trials] [-mb:k] [-mw:w] [-n:name]

[-o:ord] [-p:path] [-po] [-s:seed] [-wg:grp] [-wp:perm]

By default, the command searches quasi–randomly until it finds n involutions in the group
permGroup, and if k1, k2, . . . are specified, it saves the k1 st, k2nd, . . . elements found. (See
discussion of the -wp and -wg options below.) The value of n may be at most 99. The
seed used in the random number generator may be specified by the -s:seed option; two
invocations with the same (default or specified) seed should produce identical results. If
the -o:ord option is given, the command searches for elements of order ord, rather than for
involutions. If the -f option is specified, it prints the number of fixed points of each element
found. If the -po option is specified, it prints the orders of all products of the elements
found. If the -wp:perm option is given and k1 is specified, the k1 st element found is saved
as the permutation perm. If the -wg:grp is given and at least k1 is specified, a group grp is
created using the k1 st, k2nd, . . . elements found as generators.

In some groups, elements of a specified order may be very difficult to find using the quasi–
random search technique employed by fndelt. For example, it is very difficult to find
involutions in PGL2(2

k) if k is fairly high (say 10 to 15). The -m:trials option may be
used to terminate the command after trials random group elements have been generated,
regardless of how many elements of the desired order have been found. By default, trials is
essentially infinite.

34

04/17/2007

Normal closures: The ncl command may be used to compute normal closures of sub-
groups. Specifically, given a group G and a subgroup H of G, the command computes the
normal closure HG of H in G. The command format is

ncl options permGroup subgroup normal closure

where options denotes

[-a] [-i] [-mb:k] [-mw:w] [-n:name] [-p:path] [-q]

The command sets normalClosure to the normal closure in permGroup of subgroup. (Note
that subgroup must be a subgroup of permGroup; this is not checked.)

At present, the strong generating set for the normal closure is constructed only by the random
Schreier method. Thus there is a (probably small) possibility that the strong generating set
may be incorrect. (This will be fixed eventually; if it occurs, the generators obtained will
generate the normal closure, but not strongly.)

Orbit structure: The orblist command performs various calculations relating to the
orbit structure of a specified group, or to the orbit structure of point stabilizers within the
group. The command format

orblist options permGroup [p1, p2, . . . , pk [ptStabGroup]]

where options denotes

[-a] [-i] [-len] [-lr] [-mb:k] [-mw:w] [-n:name] [-p:path]

[-ps:set] [-q] [-r] [-s:seed] [-wno:k] [-wo:p1, p2, . . .] [-wp:partn] [-z]

In the absence of any options, and with only one non–option parameter, the command
writes (to standard output) the orbits of the group permGroup. For each orbit, the orbit
representative, the orbit length, and the list of points in the orbit are written. If the -r

option is given, the order in which the orbits are listed is randomized; the seed for the
random number generator that is used may be specified by means of the -s:seed option.
(Note that the -r option is ignored if the -len or -lr options are specified.)

If the -len option is specified, only the orbit lengths are written. If the -lr option is given,
only the orbit representatives and orbit lengths are given; the output consists of a list of
pairs rep:len, where rep is an orbit representative and len is the length of the corresponding
orbit.

The -wp:partn may be used save the orbit partition of the group as the partition partn.
The -wo:p1, p2, . . . option may be used to save the union of the orbits of points p1, p2, . . .
as a point set; the name of the point set is the string set given by the -ps:set option.
Alternatively, the -wno:k option causes the union of the first k orbits to be saved as a point
set, whose name again is specified by the -ps:set option.

If a second non–option parameter p1, p2, . . . , pk is specified, all orbit calculations are car-
ried out in the stabilizer in permGroup of the point sequence p1, p2, . . . , pk, rather than in
permGroup itself. Note that this entails a base change for the group permGroup. The -z

option causes redundant strong generators for permGroup to be removed following this base
change. Specifying a third non–option parameter ptStabGroup option causes point stabilizer
of p1, p2, . . . , pk to be saved as the permutation group ptStab.

35

04/17/2007

Point stabilizers: The ptstab command may be used to compute point stabilizers in
permutation groups. The command format is

ptstab options permGroup p1, p2, . . . , pk ptStabGroup

where options denotes

[-a] [-i] [-mb:k] [-mw:w] [-n:name] [-p:path] [-q] [-z]

The point stabilizer in the group permGroup of the list p1, p2, . . . , pk is computed and saved
as the permutation group ptStabGroup. Note that, in the list p1, p2, . . . , pk, individual points
are separated by commas but not by blanks. The -z option causes certain redundant strong
generators for ptStabGroup to be removed before the group is saved.

Random point sets and partitions: The randobj command may be used to construct
a random k–element subset of {1, . . . , n} for specified n and k, or to construct a partition of
{1, . . . , n} that is random subject to the cells having specified sizes. The command format

randobj options type n k1, k2, . . . , kp newObject

where options denotes

[-a] [-e] [-n:name] [-s:seed]

Here type must be either set or partition; it indicates whether a point set or partition is
to be constructed. For a point set, p must be 1; a random k1–element subset of {1, . . . , n} is
constructed. For a partition, in the absence of the -e option, k1 + k2 + . . .+ kp must equal
n; a partition of {1, . . . , n} random subject to having cell sizes k1, k2,..., kp is constructed.
However, if the -e option is specified, then p must equal 1, and a random partition having
k1 cells of equal size (as closely as possible) is constructed. In any case, the point set or
partition constructed is saved as the object newObject.

The -s:seed option may be used to specify an initial seed for the random number generator
that is used.

Weight distributions of codes: The wtdist command may be used to compute the
weight distribution of a linear code. The program is highly optimized, both for binary and
nonbinary codes. The command format is

wtdist options code [saveWeight matrix]

where options denotes

[-a] [-b] [-g] [-n:name] [-p:path] [-pf:p] [-s:m] [-q] [-1]

The weight distribution of the code code is computed and written to the standard output.
If saveWeight (which should be a positive integer) and matrix are specified, the codewords
of weight saveWeight are saved; specifically, a new matrix matrix is created whose rows are
the vectors of weight saveWeight in the code code. However, for nonbinary fields, only one
codeword from each one-dimensional subspace is saved. (Thus, for a code over GF(q) with
k vectors of weight saveWeight, matrix will have k/(q − 1) rows.) Also, if the -1 option
is specified, only one codeword of weight saveWeight will be saved, and thus matrix will
have only one row. In the event that the code has no codewords of the specified weight, the
matrix is not created.

36

04/17/2007

Four options, -b, -g, pf:p, and s:m, are never necessary but may be used to optimize
performance. The -s:m option may be coded if codewords of weight saveWeight are to be
saved, and if the number of such codewords is known in advance; the value of m should be
the number of such codewords (excluding scalar multiples, for nonbinary fields). Use of this
option saves some time and space. (If an incorrect value of m is specified, the savings in
time and space may be lost, but the results will still be correct.)

To understand the other optimization options, it is necessary to understand that the wtdist
command invokes one of two programs: a considerably optimized program for codes over
any field, or an even more highly optimized one for binary codes meeting certain constraints
on length and dimension. The binary code program requires a fixed amount of time (several
seconds or more on a micro or workstation) to construct a certain table of size 65536, even
if the dimension of the code is small. Accordingly, the wtdist command invokes the general
code program for binary codes of low dimension; however, the criteria for choosing the cutoff
point is relatively crude, and often a nonoptimal choice may be made. The -g option forces
the general code program to be used, even if the binary one would be chosen by default. The
-b option forces the binary code program to be used, provided the code is binary, provided
its length is at most 128, and provided its dimension is at most 3. (If any of these conditions
fail, the binary program cannot be used.)

The -pf:p option is applicable only if the general code program is employed. The value of p,
which is referred to as the packing factor, should be a positive integer such that qp ≤ 65535.
(Here q is the field size.) Internally, the program will pack p coordinates of each codeword
into a single 16–bit word. Higher values of p improve performance on codes of high dimension.
On the other hand, the size of the internal tables that must be allocated and initialized rise
very rapidly as a function of p, and in particular, a value of p maximal subject to qp ≤ 65535
will be practical only with a rather large memory, and will be optimal with respect to time
only for codes of quite high dimension, because of the large amount of time spent initializing
the tables. (The size in bytes of the largest single table used internally is roughly qpek⌈n/p⌉,
where n is the length, k is the dimension, and e is the exponent of the field.) The program
will choose a packing factor by default, but at present the procedure for making this choice
is crude. In particular, if the program runs out of memory, a smaller packing pactor should
be specified.

X. THE UNIX DISTRIBUTION

On Unix, the programs, documentation, and examples will be available by anonymous ftp
from math.uic.edu. The directory pub/leon/partn should contain the following files, where
r denotes the release number, e.g. 1.00:

doc- r.tar.Z

examples- r.tar.Z

src- r.tar.Z

bin16- r.sun4.tar.Z

bin16- r.sun3.tar.Z

bin32- r.sun4.tar.Z

bin32- r.sun3.tar.Z

37

04/17/2007

(The last two files may be omitted to conserve disk space, but can be made available on
request; contact the author at leon@turing.math.uic.edu.) Users with a Sun/4 should
obtain the files doc.tar.Z, examples.tar.Z, and bin16.sun4.tar.Z, which contain, re-
spectively, the documentation, the examples, and 16-bit executables for the Sun/4. Users
desiring the C language source code (of limited use, due to inadequate documentation)
should obtain the file src.tar.Z. Note that source code is not required since binary exe-
cutables for the programs are supplied. Users needing to compute with groups of degree
greater that 65000 (approximate) should obtain the file bin32.sun4.tar.Z, which contains
32-bit executables. Users with a Sun/3 merely substitute “sun3” for “sun4” in the preced-
ing instructions. Other users should obtain only the files doc.tar.Z, examples.tar.Z, and
src.tar.Z. It will be necessary to compile the source; a make file is provided for this purpose
(See Section XI).

A directory, say partn, should be created, and all the files should be downloaded or moved
to this directory. They should then be uncompressed and extracted by commands such as

uncompress -v doc.tar.Z

tar xvf doc.tar

(Repeat the above for each of the files.) The result should be subdirectories of partn as
follows:

doc Documentation for the programs – primarily this manual.

examples The subdirectories of this directory contain examples. See Section VIII.

test Unix shell scripts to test the partition backtrack programs, using some of
the examples provided in the examples subdirectory.

src Source code and a make file, to allow compilation of the programs on
machines other than the Sun/3 and Sun/4.

bin16 executable programs for the Sun/3 or Sun/4, using 16–bit integers.

bin32 executable programs for the Sun/3 or Sun/4, using 32–bit integers.

For the Sun/3 or Sun/4, the appropriate directory partn/bin16 or partn/bin32 should be
added to the path, or the files from one of those directories should be copied to a directory
on the path. For other Unix machines, it will be necessary to recompile the source; see
Section XI.

Once installation is complete, the programs may be tested using the shell scripts in the
subdirectory test. Specifically, the following shell scripts, written for the Bourne shell, are
provided:

test setstab

test cent

test inter

test desauto

test setimage

test conj

test desiso

Each of the above shell files may be run, without options or parameters. When test setstab

is run, the output is collected in a file named setstab.output, as well as appearing on the

38

04/17/2007

screen. This file may be compared to the file setstab.correct, supplied in the subdirectory
tests, which contains the correct output. The files should match exactly. The comparison
may be performed, for example, with the command

diff setstab.output setstab.correct

The other shell files work in an analogous manner.

The tests above may take a number of hours, depending on the speed of the machine. In
addition, they require several megabytes of memory. Each of the shell files accepts an option
-s, which runs a much less time–taking series of tests, requiring less memory. When this
option is used with test setstab, the output in file setstab.output should be compared
to the file setstab-s.correct, rather than to setstab.correct. A similar remark applies
to the other tests.

The programs described in this manual are also available, in binary form, for the IBM PC
and compatibles, under MS DOS, and for the IBM 370 family of machines, under CMS. For
details, please contact the author.

XI. COMPILING THE SOURCE CODE

As mentioned earlier, compiled versions of the programs described here are available for the
IBM PC (DOS), the Sun/3 and Sun/4 (Unix), and the IBM 370 (CMS). For other systems,
it will be necessary to compile the C source code. The information in this section is intended
for users intending to compile the source code.

To compile the C source code, a compiler that supports ANSI Standard C is required.
With very minor exceptions, the source code conforms to the ANSI standard for C; it does,
however, make use of a number of features not present in most pre–ANSI versions of C.
The code was written under the assumption that it would be compiled with optimization
turned on, so it is important to enable optimization, as the programs tend to run quite

slowly if compiled with optimization disabled.† At present large sections of the source
code are not commented or are commented incorrectly. Accordingly, the source is provided
primarily so that users may compile the programs on other machines, rather than modify
them. Eventually the author hopes to distribute adequately documented source code.

Prior to compiling the source, it is necessary to determine whether a special timing function
needs to be supplied. By default the programs use the C standard library function clock()

to measure execution times. This is adequate on many systems. However, on some systems
(e.g., Sun/3 and Sun/4 Unix), a problem arises because the clock() function returns a
result with a resolution of one microsecond and thus “wraps around” in about 36 minutes.
Unless the user is content with timing statistics correct modulo 232 microseconds (about
71.58 minutes), an alternate timing function must be supplied in a file which should be
named cputime.c; this function must return a value of type long which represents the

† However, some compilers fail to optimize the code correctly. GNU C 1.39 and 2.1 (Sun/3, Sun/4)

and Waterloo C 3.2 (IBM 370) optimize it correctly; at present, Borland C++ 3.0 and Mi-

crosoft C 5.1 do not. Microsoft C 6.0/7.0 and Borland C++ 3.1 have not been tested.

39

04/17/2007

elapsed CPU time, and C macros CPU TIME and TICK must be defined to specify the name
of this special function (e.g., cpuTime) and the resolution of the function (in clock ticks per
second), respectively. In addition, a make file macro CPUTIME must be defined to have the
value cputime.o (assuming object code files have suffix o). These macros are discussed in
more detail below. For the Sun/3 and Sun/4, source code for such a function cpuTime()

is supplied in the file cputime.c; perhaps this function will work on other Unix systems as
well. In the remainder of this section, it is assumed that such a function, if needed, has
already been written.

A make file (named Makefile) is provided with the source. This make file is designed for
the GNU C compiler, version 2, on the Sun/3 and Sun/4, but with some other compilers
and systems, only simple editting of the first few lines of the make file should be needed; the
purpose of these lines is to define appropriate make file macros. For some compilers, more
extensive editting of the make file may be required. Note that the make file assumes that all
source code and include files (except system include files) are in the currect directory, and
that all object and executable files are to be placed in this directory.

The make file provided with the source begins as follows:

COMPILE = gcc

DEFINES = -DSUN UNIX GCC -DINT SIZE=32 -DCPU TIME=cpuTime -DTICK=1000

-DLONG EXTERNAL NAMES -Dclock t=long

INCLUDES =

COMPOPT = -c -O2 -Wall

LINKNAME = -o

LINKOPT = -v

OBJ = o

CPUTIME = cputime.o

BOUNDS =

The purpose of the make file macros defined here is as follows:

COMPILE: This macro specifies the command to invoke the C compiler; it may include
path information.

DEFINES: This make file macro specifies C macros to be defined for the compilation;
these are discussed below.

INCLUDES: This macro is used to tell the compiler where to search for include files, if
they are located other than in the standard location.

COMPOPT: This macro is used to specify compile–time options, other than those given
by means of the DEFINES and INCLUDES macros. These options should include code
optimization and compile–only (no linking) if these are not defaults. For the IBM PC,
an option specifying the large memory model should be given.

LINKNAME: This macro is used to specify the linker option used to give the name of the
executable file to be created.

LINKOPT: This macro is used to specify linker options, other than that given by the
LINKNAME macro above.

OBJ: This macro is used to specify the suffix (file type) for object files. Normally this
would be o on Unix and obj on MS DOS.

40

04/17/2007

CPUTIME: Unless a special timing function is to be supplied (see discussion above), this
value of this macro should be the null string. If a special timing function is supplied,
the value of the CPUTIME macro should be cputime.o, assuming object files have suffix
o.

BOUNDS: This macro is present for use on MS DOS with Bounds Checker, a debugging
product published by Nu-Mega Technologies and used heavily by the author in debugging
the programs. Normally its value should be the null string.

It remains to discuss the C language macros that must, or may, be defined by the make macro
DEFINES. One of these C macros, INT SIZE, always must be defined; the others are optional,
or are required only in certain circumstances. The C language macros are as follows:

INT SIZE: This macro is always required. Its value must be the number of bits in the
C data type int, usually 16 or 32. (The programs have never been adapted to a system
in which the integer size is other than 16 or 32, although it should not be difficult to
do so.) Note: This macro only specifies the size of the C data type int; it does not

determine whether the programs are compiled to use 16 or 32 bit integers.

EXTRA LARGE: If this macro is defined, and INT SIZE above is 32, the programs will
be compiled using 32–bit integers; that is, points will be represented using the C data
type unsigned. Otherwise, if INT SIZE is 32, the programs will be compiled using 16–
bit integers (with most compilers), as points will be represented using the C data type
unsigned short. Note EXTRA LARGE should not be defined when INT SIZE is 16. Care
must be taken, of course, not to link object files compiled with EXTRA LARGE defined
with those compiled without it defined, as the make file cannot protect against this
error. (However, running the programs with the -v option will reveal this error.)

LONG EXTERNAL NAMES: This macro should (but need not) be defined if the linker sup-
ports long external names (up to 31 characters). If defined, its value is irrelevent.

CPU TIME: This macro must be defined if a special timing function is supplied, and its
value must be the name of that function. If the standard C function clock() is to be
used, the macro must not be defined (not even as the null string).

NOFLOAT: This macro probably should be defined on a system lacking floating point
hardware support. (If defined, its value is irrelevant.) Normally, the programs perform a
small amount of floating point arithmetic in attempting to produce a good R–base; with
software emulation of floating point instructions, the cost of this use of floating point
arithmetic probably exceeds its benefit. If the NOFLOAT macro is defined, no floating
point arithmetic is used. (In this case, it may be advantageous to add a compiler
option telling the compiler not to incorporate floating–point support into the executable
program. For example, under Borland C++, the -f- option has this effect.)

TICK: This macro should be defined in two situations: (1) If a special CPU time func-
tion is supplied, TICK should be defined to be the resolution (in clock ticks per second)
of that function, and (2) if the NOFLOAT macro is defined and if the compiler–supplied
definition of the standard C macro CLK TCK is a floating point constant (as occurs with
Borland C++), TICK should be defined to be the nearest integer approximation to the
value of CLK TCK, e.g., 18 for Borland C++.

41

04/17/2007

HUGE: This macro must be defined for the IBM PC (unless a DOS extender is being
used). It simply causes a few pointers to be declared as huge. Only one program, the
weight distribution program, uses huge pointers.

In addition, the author recommends defining a symbol unique to the system and compiler,
e.g., SUN UNIX GCC above. Then any code modifications unique to this system and compiler
can be bracketed as follows:

#ifdef SUN UNIX GCC

/* Code modifications for Sun Unix, GNU C compiler. */

#endif

Once the make file has been editted appropriately, all of the programs may be compiled at
once by the command

make all

or, alternatively, individual programs may be compiled by the commands

make setstab for setstab, setimage, parstab, and parimage,
make cent for cent, conj, gcent,
make inter for inter,
make desauto for desauto, desiso, matauto, matiso, codeauto, and codeiso,
make cjrndper for cjrndper and cjper,
make commut for commut and ncl,
make compgrp for compgrp,
make fndelt for fndelt,
make generate for generate,
make orblist for orblist, chbase, and ptstab,
make randobj for randobj,
make wtdist for wtdist and cwtdist.

Ideally, there should be no errors in compilation. However, with some compilers (e.g.,
Zortech C++), it is necessary to define const to be a null string in order to avoid compile–
time errors. Typically compilers will generate a number of warnings; a number of them
involve implicit conversion between pointers to constant and non–constant types.

The above commands place the executable programs in the current directory (that containing
the source). The final step is to move the executables to the directory in which they should
reside, preferably one on the current path. A shell file named install is provided for this
purpose. The command

sh install bindir

should be issued, where bindir is the name of the directory in which the binary files should be
placed, e.g., ../bin. Note that this command also copies certain shell files from the source
directory to the binary directory, renaming them by dropping the sh suffix in the process.

42

04/17/2007

REFERENCES

Leon, J. (1980a), On an algorithm for finding a base and a strong generating set for a group
given by generating permutations, Math. Comp. 35, 941–974.

Leon, J. (1991), Permutation group algorithms based on partitions, I: Theory and algo-
rithms, J. Symbolic Comp. 12, 533–583.

Cannon, J. (1984), A language for group theory, Dept. of Pure Mathematics, University of
Sydney, Australia.

Sims, C. C. (1971), Computation with permutation groups, In (Petrick, S. R., ed.), Proc.

of the Second Symposium on Symbolic and Algebraic Manipulation, New York: Assoc. for
Computing Mach.

43

