design : a GAP 4 package - References

[BaCh]
R. A. Bailey and P. E. Chigbu.
Enumeration of semi-latin squares.
Discrete Math., 167-168:73--84, 1997.
https://doi.org/10.1016/S0012-365X(96)00217-8.
[BaCa]
R. A. Bailey and P. J. Cameron.
Combinatorics of optimal designs.
In S. Huczynska, J. D. Mitchell, and C. M. Roney-Dougal, editors, Surveys in Combinatorics 2009, volume 365 of London Math. Soc. Lecture Note Series, pages 19--73. Cambridge University Press, 2009.
[Dotw]
R. A. Bailey, P. J. Cameron, P. Dobcsányi, J. P. Morgan, and L. H. Soicher.
Designs on the web.
Discrete Math., 306:3014--3027, 2006.
https://doi.org/10.1016/j.disc.2004.10.027.
[BaRo]
R. A. Bailey and G. Royle.
Optimal semi-latin squares with side six and block size two.
Proc. Roy. Soc. London, Ser. A, 453:1903--1914, 1997.
https://doi.org/10.1098/rspa.1997.0102.
[Extrep]
P. J. Cameron, P. Dobcsányi, J. P. Morgan, and L. H. Soicher.
The external representation of block designs, Version 2.0, 2004.
https://webspace.maths.qmul.ac.uk/l.h.soicher/designtheory.org/library/extrep/.
[CaSo]
P. J. Cameron and L. H. Soicher.
Block intersection polynomials.
Bull. Lond. Math. Soc., 39:559--564, 2007.
https://doi.org/10.1112/blms/bdm034.
[JK07]
T. Juntilla and P. Kaski.
Engineering an efficient canonical labeling tool for large and sparse graphs.
In D. Applegate et al., editor, Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on Analytic Algorithmics and Combinatorics, pages 135--149. SIAM, 2007.
bliss homepage: http://www.tcs.hut.fi/Software/bliss/.
[Nau90]
B. D. McKay.
nauty user's guide (version 1.5), Technical report TR-CS-90-02.
Australian National University, Computer Science Department, 1990.
nauty homepage: http://cs.anu.edu.au/people/bdm/nauty/.
[MP14]
B. D. McKay and A. Piperno.
Practical graph isomorphism, ii.
J. Symbolic Comput., 60:94--112, 2014.
https://doi.org/10.1016/j.jsc.2013.09.003.
[McSo]
J. P. McSorley and L. H. Soicher.
Constructing t-designs from t-wise balanced designs.
European J. Combin., 28:567--571, 2007.
https://doi.org/10.1016/j.ejc.2005.02.003.
[Soi10]
L. H. Soicher.
More on block intersection polynomials and new applications to graphs and block designs.
J. Comb. Theory, Ser. A, 117:799--809, 2010.
https://doi.org/10.1016/j.jcta.2010.03.005.
[Soi13]
L. H. Soicher.
Designs, groups and computing.
In A. Detinko, D. Flannery, and E. O'Brien, editors, Probabilistic Group Theory, Combinatorics, and Computing. Lectures from the Fifth de Brún Workshop, volume 2070 of Lecture Notes in Mathematics, pages 83--107. Springer, Berlin, Heidelberg and New York, 2013.
[Grape]
L. H. Soicher.
The GRAPE package for GAP, Version 4.9.2, 2024.
https://gap-packages.github.io/grape.
[Soi24]
L. H. Soicher.
Using GAP packages for research in graph theory, design theory, and finite geometry.
In A. A. Ivanov, editor, Algebraic Combinatorics and the Monster Group, volume 487 of London Math. Soc. Lecture Note Series, pages 527--566. Cambridge University Press, 2024.
accepted manuscript available at: https://webspace.maths.qmul.ac.uk/l.h.soicher/g2g2_final.pdf.

[Up]

design manual
November 2024